Aprendizaje de máquinas aplicado a un sistema de chat universitario

Nadine Castillo, Roymer Camacho, Luis Castilla, Katherine De la Hoz, Mario Bonfante-Aldana

Resumen


 

El aprendizaje automático es un tipo de Inteligencia Artificial (IA) que proporciona a los equipos la capacidad de aprender sin ser programada de forma explícita. El aprendizaje automático se centra en el desarrollo de programas informáticos que pueden enseñar a sí mismos y cambiar cuando se exponen a nuevos datos. El proceso de aprendizaje de la máquina es similar a la de la minería de datos. Ambos son sistemas de búsqueda a través de datos para encontrar patrones. Sin embargo, en lugar de extraer datos para la comprensión humana-como es el caso en aplicaciones de minería de datos-aprendizaje automático utiliza esos datos para detectar patrones en los datos y ajustar las acciones del programa en consecuencia.

 


Palabras clave


Inteligencia artificial, Maquinas de aprendizaje, Redes neuronales, Minería de datos

Referencias


J. Howard. “The business impact of deep learning”. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, Illinois, USA, 2013.

A. Bicchi, “Of Robots, Humans, Bodies and Intelligence: Body Languages for Human Robot Interaction”. Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, Portland, Oregon, USA, 2015.

C. Bucilu, R. Caruana & A. Niculescu-Mizil “Model compression”. Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, 2006.

D. Kazakov & A. R. Shahid. “Unsupervised construction of a multilingual WordNet from parallel corpora”. Proceedings of the Workshop on Natural Language Processing Methods and Corpora in Translation, Lexicography, and Language Learning, Borovets, Bulgaria, 2009.

L. Zheng, S. Wang, Y. Liu, & C. H. Lee. “Information theoretic regularization for semi-supervised boosting”. Proceedings of the 15th ACM SIGKDD International Conference On Knowledge Discovery and Data Mining, Paris, France, 2009.

A. Wilson, A. Fern, & P. Tadepalli, “Bayesian role discovery for multi-agent reinforcement learning”. Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, Toronto, Canada, 2010.

C. K. Tyran & J. F. George, “The implementation of expert systems: a survey of successful implementations”; SIGMIS Database, vol. 24, no. 1, pp. 5-15, 1993.

Q. Xu, S. J. Pan, H. H. Xue & Q. Yang. “Multitask Learning for Protein Subcellular Location Prediction”. IEEE/ACM Trans. Comput. Biol. Bioinformatics, vol. 8, no. 3, pp. 748-759, 2011.

J. Lee, J. Kwon, & H. Kim. “Reducing distraction of smartwatch users with deep learning”. Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, Florence, Italy, 2016.

W. Deng, Q. Zheng, & L. Chen “Real-Time Collaborative Filtering Using Extreme Learning Machine”. Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, 2009.

N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, & F. Kawsar. “Demo: Accelerated Deep Learning Inference for Embedded and Wearable Devices using DeepX”. Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services Companion, Singapore, Singapore, 2016.

Y. Minami, K. Shikano, O. Yoshioka, S. Takahashi, T. Yamada, & S. Furui. “A large-vocabulary continuous speech recognition algorithm and its application to a multi-modal telephone directory assistance system”. Proceedings of the workshop on Human Language Technology, Plainsboro, NJ, 1994.

M. D. Marsico, M. Nappi, & D. Riccio. “Measuring sample distortions in face recognition”. Proceedings of the 2nd ACM workshop on Multimedia in forensics, security and intelligence, Firenze, Italy, 2010.

G. E. Hinton, “A better way to learn features: technical perspective”; Commun. ACM, vol. 54, no. 10, pp. 94-94, 2011.

H. Barrigas, D. Barrigas, M. Barata, P. Furtado & J. Bernardino, “Overview of Facebook scalable architecture” Proceedings of the International Conference on Information Systems and Design of Communication, Lisbon, Portugal, 2014.

J. Parra, L. Trujillo, & P. Melin, “Backpropagation learning with a (1+1) ES”. Proceedings of the 12th annual conference companion on Genetic and evolutionary computation, Portland, Oregon, USA, 2010.

W. Choi et al “Hybrid network-on-chip architectures for accelerating deep learning kernels on heterogeneous manycore platforms”. Proceedings of the International Conference on Compilers, Architectures and Synthesis for Embedded Systems, Pittsburgh, Pennsylvania, 2016.

J. Goncalves, V. Kostakos, & J. Venkatanathan, “Narrowcasting in social media: effects and perceptions”. Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Niagara, Ontario, Canada, 2013.

Z. Zhang, F. Masseglia, R. Jain, and A. D. Bimbo, “KDD/MDM 2006: The KDD Multimedia Data Mining workshop report,”; SIGKDD Explor. Newsl., vol. 8, no. 2, pp. 92-95, 2006.

W. W. Zadrozny, S. Gallagher, W. Shalaby, & A. Avadhani, “Simulating IBM Watson in the Classroom,”. Proceedings of the 46th ACM Technical Symposium on Computer Science Education, Kansas City, Missouri, USA, 2015.

G. Banavar. “Watson and the Era of Cognitive Computing”. SIGARCH Comput. Archit. News, vol. 43, no. 1, pp. 413-413, 2015.

O. Temam. “The rebirth of neural networks,”. SIGARCH Comput. Archit. News, vol. 38, no. 3, pp. 349-349, 2010.

A. Viloria & W. Quintero. “Gestión SAT río manzanares”. Investigación e Innovación en Ingenierías, vol. 4, no. 2, pp. 128-135, 2016. https://doi.org/10.17081/invinno.4.2.2493


Texto completo: PDF HTML

Enlaces refback

  • No hay ningún enlace refback.

ISSN: 2216-1570