
Library on crowd behavior for agents treatment on videogames

Library on crowd behavior for agents treatment
on videogames

Biblioteca sobre el comportamiento de las masas
para el tratamiento de los agentes a los

videojuegos

M. Proenza and Y. Proenza

Keywords:
Artificial Intelligence, agent,
Command Pattern, Steering
Behaviors.

Abstract
This paper covers the investigation process and further design and
implementation of a library on crowd behaviors for videogames. Three methods
were studied in order to pick up one of them, resulting to be Steering Behaviors
method the one selected to be adopted. The library supports simulations with a
large number of moving agents. It also copes with polygonal obstacles
avoidance. Additionally, simulations can be adapted to many contexts by tuning
some parameters. The library consists of an original design mostly based on
Command Pattern that allows it to be easily usable and extendable.

Palabras clave:
Inteligencia Artificial,
agente, modelo de
comandos,
comportamientos de
dirección.

Resumen
Este documento cubre el proceso de investigación y el diseño e
implementación de una biblioteca en los comportamientos de multitud de
videojuegos. Tres métodos fueron estudiados con el fin de recoger a uno de
ellos, el resultado es el método de dirección Comportamientos que se ha
seleccionado para su adopción. La biblioteca admite simulaciones con un gran
número de agentes móviles. También hace frente a la evitación obstáculos
poligonales. Además, las simulaciones se pueden adaptar a diferentes
contextos mediante la regulación de algunos parámetros. La biblioteca consta
de un diseño original basado principalmente en modelo de comandos que
permite que sea fácilmente utilizable y extensible.

Investig.innov.ing. Vol. 1 No 1 pp. 57-62. Enero-Junio, 2013 57

Library on crowd behavior for agents treatment on videogames

I. INTRODUCTION

Some parts of the real world are crowded, busy
places, full of people, animals and objects, which are
all interacting with each other, moving around in
opposite directions. When taking an exhaustive look
to Nature, people can contemplate many amazing
behaviors performed by flocks of birds, or schools of
fish and herds of land animals, which seem to be
extremely complex, or randomly arranged, but still
beautiful. Surprisingly, some researches reveal that
these behaviors conform to more specific rules,
which combined can generate very complex results.

One area of interest in computer sciences has always
been trying to capture these kinds of movements into
some sort of formulas and simulate them. Computer
games developers have been interested in this for
decades, since they have always tried to achieve a
more accurate simulation of reality. In particular,
Artificial Intelligence (AI) researchers have been
leading this field, coming up with new ideas every
day, making games move faster towards more
realistic approximations. Developers are investigating
and testing new AI technologies in order to be able to
build better and smarter games.

When dealing with movement in games, developers
often refer to objects that have the ability to move
and react to environmental changes, as units, or non-
player character (NPC), or agents. From now on, the
last approximation is the one that will be adopted by
this research to refer to a single object in a group,
which is able to somehow be aware of its surrounding
environment and take an action (move) according to
it.

Lots of games have incorporated some techniques on
group behaviors to bring their inner world to life,
making them more exotic. The success of these
games has been determined in some occasions by the
inclusion of a relatively advanced AI, and today it is
one of the most discussed topics when trying to take
a game into the market and make it sell.

The leadership of computer games industry belongs
to the most developed countries and the richest
corporations. The Cuban game industry is attempting
to get included among the most successful ones in

the world, in order to cope with the necessity of
exporting software products. The Universidad de las
Ciencias Informáticas (UCI) is a leading entity in
Cuban game industry. Game developers from this
university realized that, generally, games require
some kind of AI, which is also demanded by
nowadays market, which expects for the games to be
more realistic and the characters to be more
“intelligent” each time. It is needed to include AI in
the game products. In spite of that, this goal hasn’t
been accomplished, most of the time because of the
lack of AI resources, resulting in poorly realistic
games. Besides, it is needed to speed up
development time significantly, especially in the
products to come, where AI will play an important
role in their acceptance, but the ground is not settled
yet. It is also very difficult to incorporate AI to
computer games, and this is why most of the
products delay their release and deployment and
projects get stuck.

Crowd behavior is one part of AI that has been spread
and used in many classic games, such as Star Craft
and Age of Empires, rising with impressive effects and
realism, what makes these games very attractive. In
the UCI, no solution of this kind have been achieved,
a fancy one that captures the users. Despite this,
some attempts have been made, for example, the
implementation of a set of algorithms in a module,
which introduced similar techniques, but with no
great results because of their simplicity [1].

The main objective to achieve in this research is the
implementation of a library for applying realistic
crowd behavior to computer games, hoping it can be
used by every game developer at the UCI. So, it is
expected to have a library to relay in for applying
crowd behavior in games, resulting in reusable source
code, less implementation time and more realistic
and attracting game worlds.

II. METHODOLOGY
For a better understanding of what the research
should be led to and for having a way of discerning
among the studied methods and algorithms for its
adoption, it was stated “major goals” to achieve.
These major goals have been divided into two
categories: Agent-Level Goals and Library-Level Goals.

Investig.innov.ing. Vol. 1 No 1 pp. 57-62. Enero-Junio, 2013 58

Library on crowd behavior for agents treatment on videogames

They mostly refer to answers to the following
questions: What the agents should behave like? How
reactive should they be? How efficient must the
algorithms be? How real the simulation should be
performed? How extendable should the library be?

Agent-Level Goals:
• Agents’ behavior should look as realistic as

possible
• Agents should move within a continuous (not

discrete) space.
• Agents should be able to react to both,

internal logic (concerning to environment
state, i.e. obstacles, other agents) and
external logic (user/player control signals).

• Agents should be capable to avoid collision
with static polygonal obstacles.

• Agents should be capable to act like a single
unit (not always in a group) and achieve
“personal missions”.

• Agents should demonstrate a coherent (not
chaotic) behavior.

• When in a group, agents should look like
having a common goal (army effect).

• Since this is not a problem of path finding,
agents aren’t meant to find the best
(shortest) path to its goal, but a safe one.

Library-Level Goals
• Algorithms and methods should be efficient

enough so that games’ frame rate is
acceptable when using the library.

• The library should allow enhancements for
future extensions in games.

• The library should be fast to create
(implementation time of about two months).

• The library should be adaptable to new
simulation requirements.

• The library must be able to handle 2D
movement.

The investigation process explored some concepts
and methods for dealing with group behaviors. It was
studied how each of these methods can handle
groups of agents and were described their limitations,
in order to end up picking one of them.

Three methods were evaluated:

• Potential Function Based Movement
• Cellular Automata
• Steering Behaviors

Table 1 summarizes the comparison among the

three methods according to six selected hints.
At first, these three methods were narrowed down

to two candidates: Potential Field Based Movement
and Steering Behaviors.

While Potential Field Based Movement might have
been useful for achieving most of the “major goals”
dictated previously (see Introduction), it was the high
capability for extensions that Steering Behaviors
method has, the deciding factor leading to choose it
as the method to be adopted in the implementation.

These are the adopted specifications that guided
the design and implementation of the library:

• Use Steering Behaviors Method to model the

agents’ movement.
• Find a method that uses information about

objects in the world to keep agents aware of
its surrounding environment.

• The method should be robust enough to
support a large number of agents.

• Find a design where Locomotion and Steering
layers are decoupled.

• Use a 2D approach.

The solution proposal is focused on finding a

suitable design for the library, so that it was easily
extendable. On the other hand, requisites were not
clear at first. They were appearing one by one and at
the same time added into the library. The code was
refactored after the inclusion of functionalities, so
that the current version of the library was stabilized
all the time. The programming language was C++ and
the project was developed using Visual Studio 2008
Team System.

III. OUTCOMES AND DISCUSSION
The design of the library is basically centered on
Command Pattern. This design pattern allows you to
decouple the requester of an action from the actual

Investig.innov.ing. Vol. 1 No 1 pp. 57-62. Enero-Junio, 2013 59

Library on crowd behavior for agents treatment on videogames

object that performs the action. The library takes
advantage of that and lets some objects
communicate for an effective interaction between
the agents and the environment. The specifications
for this pattern can be found at [2].

In the library, the implementation of the Command
Pattern has assumed some modifications and
extensions (although its essence remains the same),
and has been approached the following way (see
Figure 1).

Fig. 1 Report of relevant data and agents' reaction

This figure shows only a reduced part of the

classes in the library, but which are considered to be
the top level ones.

TABLA I
Comparison among studied methods

The sequence of interactions among these objects

is related bellow:

1. The agent gets equipped with all the
equipments.

2. The agent constantly updates each
equipment it has been equipped with.
3. In each update time, the equipments query

the world for information (relevant data).
4. If some relevant data is found, the equipment

unchains a mechanism in the agent, which
means send a signal (or more than one) with
the information collected.

5. The signal contains the knowledge to activate
the proper mechanism for the agent to react
to the particular information that has been
transmitted through it, so, it firstly converts
this information so that the mechanism
understands it and then activates the
mechanism.

6. The mechanism calculates a force to be
applied to the agent accordingly and sends it
to the agent.

7. The agent accumulates the force received
from each mechanism to apply it to itself.

8. The agent responds to the accumulated
force.

The mechanisms currently supported in the library

Hints

Methods

Level of
Realism

Possibility of
Avoiding
Polygonal
Obstacles

User
Control

Algorithms
Efficiency

Possibility of
Extensions

Ease of
implementation

Potential
Function
Based
Movement

High with
circular
obstacles

Yes, but with bad
approximations

High Medium.
Can be
accelerated

Yes, but with
the constraint
that the force
must point
along the line
connecting
two objects

Very easy

Cellular
Automata

Medium Yes. Requires
finding a function

Low High Yes, but need
also to extend
the transition
functions

Easy

Steering
Behaviors

High.
Requires
tweaking

Yes High Medium.
Can be
accelerated

Yes Easy

Investig.innov.ing. Vol. 1 No 1 pp. 57-62. Enero-Junio, 2013 60

Library on crowd behavior for agents treatment on videogames

are the following:

• Flocking

The equipment used here is called X-Circular View
Range, because it appeared useful to model the
agents’ vision to cope with flocking. Figure 2 shows it
graphically.

Fig. 2 X-Circular View Range

Agents just flock with those within their view

ranges, following three simple rules described in [3],
which are: Separation, Alignment and Cohesion.

Fig. 3 An agent flocking with others: Separation, Alignment and

Cohesion

• Obstacle Avoidance

To model the Obstacle Avoidance it was used an
equipment named Box Obstacle Sensor. A box is a
very convenient shape since it can totally wrap the
agents so that it can protect them better and keep
them safe from bumping into obstacles.

Fig. 4 Box Obstacle Sensor

To detect a collision, three segments are defined in
the box, so that obstacle avoidance is reduced to
segment-segment interception with the sides of the
obstacles.

Fig. 5 Interception segments

The avoidance is performed directing the agent

towards a direction under a user defined angle
according to the normal to the collision point.

Fig. 6 Obstacle Avoidance

• Avoid Individual

Avoid Individual mechanism uses the same
equipment as Flocking: X-Circular View Range.

Taking evasive action has been approached a way

similar to that described in [4]. After having detected
the closest approach, if its distance is bellow a
distance toleration, the agent deviates itself
perpendicularly to its current heading.

Investig.innov.ing. Vol. 1 No 1 pp. 57-62. Enero-Junio, 2013 61

Library on crowd behavior for agents treatment on videogames

Fig. 7 Avoid Individual

The library also holds some other features:

• Neighbors’ Search Acceleration

For this, a grid shaped space partition has been
approached, so that complexity is reduced from O
(n²) to a complexity close to O (n). Locality queries are
made to this utility in order to be aware of the
objects that are a distance away from certain
position.

• Movement Smoothing

A smoother utility keeps track of a number of
values for the agents’ heading and can be asked any
time for its average value. This way and by decoupling
the agent’s heading from its velocity the movement is
smoothed so that agents do not make sudden
turnings.

• Non-Penetration Insurance

Cero overlapping is also guaranteed in the library. A
non-penetration enforcer forces the agents to
separate when an overlapping is found.

• Groups Formation

Groups formation is approached in an original way,
by assigning category numbers to the agents. A
category setter handles the generation of these
numbers for the agents, so that forming groups is
easily done by “playing” with categories.

The interface provided by the library is very simple

to use and let the users work without regards of what
happens inside. On the other hand, an important
characteristic of the library is its extensibility. The

library can be easily extended to cope with certain
requirements in a game. This is considered to be the
most important contribution of this research.

IV. CONCLUSIONS
 This research and the implementation of a
library on crowd behaviors for videogames arise with
the following results:

• Game developers now count on a resource
for applying crowd behaviors for videogames,
which is very easy to use, extend and which
can be shared among programmers.

• The library supports the following behaviors:
Separation, Alignment, Cohesion, Polygonal
Obstacle Avoidance and Individual Avoidance.

The library holds some other features, like:
Neighborhood Queries Acceleration, Movement
Smoothing, Cero Overlapping among Agents and an
easy way of Forming Groups.

REFERENCES
[1]Falcón, R. E. “Módulo de algortimos de locomoción con múltiples Steering

Behaviors”. UCI. 2008. Undergraduate Thesis.

[2]Freeman, E., Bates, B. & Sierra, K. Design Patterns. [ed.] Head First. 1st.

s.l.: O'Reilly, 2004.

[3]Reynolds, Craig W. “Steering Behaviors for Autonomous Characters”. In

Proceedings of SIGGRAPH’99. 1999.

[4]Green, Robin. “Steering Behaviors”. In Proceedings of SIGGRAPH’00.

2000.

.

Investig.innov.ing. Vol. 1 No 1 pp. 57-62. Enero-Junio, 2013 62

	Introduction
	Methodology
	Outcomes and discussion
	Conclusions
	References

