
Comprehensive Visual Development Environment
for Learning Robotics Programming

Ambiente visual integrado de desarrollo
para el aprendizaje de programación en robótica

Abstract

Objective: This work seeks to review some positive aspects and characteristics of using robotics in

academic environments and to describe some features of programming languages used in robotics

implementation. Methodology: This work explains how a development environment implemented

through cloud computing features can be used to teach robotics at K-12 and college levels. The

programming environment combines visual programming using Business Process Management

(BPM) notation and text-based programming. Results: The obtained results reveal that a gradual

transition from visual languages to text-based programming languages is feasible and present the

advantages of teaching standards aimed at developing process modeling skills. Conclusions: This

study demonstrates the potential exhibited by educational programming environments for teaching

robotics in a cloud computing environment, thus reducing the gap between visual programming and

text-based programming using multiple robotic devices within the same development scenario.

Keywords: Educational Robotics, Visual Programming, STEM, Fourth Industrial Revolution, Artificial

Intelligence.

Resumen

Objetivo: Revisar algunos aspectos y características positivas del uso de la robótica en ambientes

educativos y describir algunas de las características de los lenguajes de programación utilizados en

su implementación. Metodología: se explica como un ambiente de desarrollo implementado mediante

el uso de algunas características de computación en la nube, puede ser usado para aplicar robótica

en escuelas, colegios y universidades. El entorno de programación combina la programación gráfica

utilizando notación de procesos de trabajo (BPM) y programación textual. Resultados: se demostró

que se puede hacer una transición gradual de lenguajes visuales a lenguajes de programación

textuales, así como las ventajas de aprender estándares que permiten el potenciar el aprendizaje

de habilidades en el modelado de procesos. Conclusiones: se comprobó la capacidad que tienen

los entornos de programación diseñados con propósitos educativos para trabajar la robótica en un

ambiente cloud computing, reduciendo la brecha que permite pasar de una programación gráfica

a una programación textual usando múltiples dispositivos robóticos, en un único escenario de

desarrollo.

Palabras clave: robótica educativa, programación visual, STEM, cuarta revolución industrial,
inteligencia artificial.

Como citar (IEEE): C. Ruíz-Ramírez., D. Montoya-Quintero., y J. Jiménez-Builes. “Ambiente visual integrado de desarrollo para
el aprendizaje de programación en robótica”. Investigación e Innovación en Ingenierías, vol. 9, n°1, 7-13, 2021. DOI: https://doi.
org/10.17081/invinno.9.1.3957

Carlos Alejandro Ruíz Ramírez

Recibido: 28/07/2020
Aceptado: 27/11/2020
Publicado: 14/12/2020

Correspondencia de autores:
caaruizra@unal.edu.co

Copyrith 2020
by Investigación e
Innovación en Ingenierías

Diana María Montoya Quintero
Instituto Tecnológico Metropolitano

 Jovani Alberto Jiménez-Builes

Universidad Nacional de Colombia

http://revistas.unisimon.edu.co/index.php/innovacioning
https://doi.org/10.17081/invinno.9.1.3957
https://doi.org/10.17081/invinno.9.1.3957
https://orcid.org/0000-0002-8375-2042
mailto:caaruizra@unal.edu.co
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7598-7696
https://orcid.org/0000-0003-4195-9480
https://doaj.org/toc/2344-8652?source=%7B%22query%22%3A%7B%22filtered%22%3A%7B%22filter%22%3A%7B%22bool%22%3A%7B%22must%22%3A%5B%7B%22term%22%3A%7B%22index.issn.exact%22%3A%222344-8652%22%7D%7D%2C%7B%22term%22%3A%7B%22_type%22%3A%22article%22%7D%7D%2C%7B%22terms%22%3A%7B%22index.issn.exact%22%3A%5B%222344-8652%22%5D%7D%7D%5D%7D%7D%2C%22query%22%3A%7B%22match_all%22%3A%7B%7D%7D%7D%7D%2C%22size%22%3A100%2C%22_source%22%3A%7B%7D%7D

Carlos Alejandro Ruíz Ramírez, Diana María Montoya Quintero, Jovani Alberto Jiménez Builes8

Revista Investigación e Innovación en Ingenierías, vol. 9, n°1, pp. 7-21, 2021 DOI: https://doi.org/10.17081/invinno.9.1.3957

Introducción

This study discusses part of the results from the master’s thesis titled “Comprehensive Development
Environment for Visual/Textual Hybrid Programming Integrated with Robotic Artifacts for STEM Education
via Computer Programming,” for which a development environment was created based on the particular
characteristics of Colombia [1].

Artificial intelligence (AI) has evolved in tandem with computing advancements. In fact, as early as 1956, J.
McCarthy had already used this term to refer to the ability demonstrated by machines to make decisions
commonly associated with human cognitive capabilities. AI is broadly defined as the study of simulating
human intelligence behavior in electronic devices and machines [2]. Even though computer sciences are
typically considered a subset of AI, the AI field is ultimately multidisciplinary and depends on multiple
human knowledge areas for its proper application, such as logic, biology, electronics, physics, and language
studies.

This study focuses on AI’s educational possibilities, such as its capacity to adapt academic content, make
learning strategies more flexible, and give autonomy to schools, colleges, and universities. This is true even
when AI is used in various applications, such as image recognition, data processing, trend forecasting,
business decision-making, autonomous car driving, and robotics. AI has also been widely used in the
construction and configuration of different academic robotic devices [3] for several purposes [4, 5], thereby
clearly distinguishing between two different approaches: robotics aimed at education and educational
robotics.

Prensky [6, 7] compared the technological viewpoints of new generations who grew up with technology to
adults who had adapted to the use of digital tools at the start of the twenty-first century, identifying the need
to incorporate technologies into the classroom environment. Furthermore, several authors [8, 9] claimed
that new generations pose a natural disposition and facility for using information and communication
technology (ICT). In fact, ICTs conveniently generate student interest and strengthen science, technology,
engineering, and mathematics (STEM) learning.

In recent decades, different ways of adapting ICT in the classroom have been proposed. For example,
through online courses (e-learning, b-learning, t-learning, u-learning) or the application of AI techniques,
such as smart tutoring environments and robotics, to enhance teaching and learning support

One of the first experiences using AI for academic purposes was Logo, a high-level and easy-to-learn
language used to teach basic programming to children and adolescents. These early studies demonstrated
that teachers could use computer programming to develop new ways of understanding, thinking, and
learning [10]. Additionally, these studies demonstrate that using computers is important and necessary for
acquiring new knowledge as they facilitate learning processes in students.

In [11], the authors studied the pedagogical challenges of the 21st century. They demonstrated the radical
changes to traditional teaching that are required to incorporate a technological component because
technology has essentially changed how people understand the world around them, interact with others
and learn [12].

In [11], related works were reviewed, highlighting the constructivist characteristics of educational robotics
and its approach to solving problems with social activities [13]. Based on the foregoing, the authors compared
a group of robots used in education, considering their modularity, reusability, versatility, and price. Similarly,
robots were classified into versatile robots containing small parts that can be assembled according to

https://doi.org/10.17081/invinno.9.1.3957

9 Comprehensive Visual Development Environment for Learning Robotics Programming

Revista Investigación e Innovación en Ingenierías, vol. 9, n°1, pp. 7-21, 2021 DOI: https://doi.org/10.17081/invinno.9.1.3957

different needs and non-versatile platforms with a factory-defined structure. Finally, they discussed the
mechanisms that control robotic platforms so that they can perform the previously programmed tasks.
They noted that there are different robot control paradigms, such as wireless commands, visual language
programming, and textual language programming.

Different pedagogical approaches may be used in the classroom according to the characteristics of each
robotic device. The most basic robotic devices lack the ability to execute user-programmable instructions,
and they are limited to performing the restricted tasks for which they were designed (e.g., bristlebot, solar
cars, quadruped robots) [14]. Basic robotic devices are regularly used at basic academic levels because
they help students develop an interest in electronics and robotics at an early age. However, robotic devices
are programmable and modular at the most advanced levels and may execute multiple programmed
activities simultaneously with high precision. For example, Ozobot, Lego EV3, Arduino, Raspberry PI, and
Bioloid Kit. Among these advanced robotic devices, three types can be identified: commercial robotic kits
(Lego EV3, Bioloid), single-board computers (Arduino, Intel Galileo, Raspberry PI, Asus Tinker Board S, and
BeagleBoard), and custom devices built by researchers using microcontrollers.

In [15], the authors highlighted different artifacts used in robotics according to the desired complexity
and academic level (for example, Lego NXT, Vernier, VMCU, and HomeLab Kit). HomeLab and DistanceLab
were proposed as blended learning environments because they provide a context that facilitates direct
programming and remotely controls devices through a web programming environment. According to their
study, educational robotics had already been implemented in several educational environments in different
countries. They [15] further explained the adoption process within the Estonian educational system, from
basic education to the university level, using blended learning methodologies with microcontrollers and
electronic devices [16].

This study describes the design and construction of an integrated development platform that uses a hybrid
programming environment (graphic-textual and cloud computing-based) and serves as a supporting tool
for learning sequential robot programming of robot applications in basic, middle, and higher education.
This paper contains the following sections: the materials and methods, emphasizing the review of the
programming languages used in educational robotics; the methodology used to build the programming
environment; the results obtained from this study; the conclusions and references used.

Materials and Methods: Programming Languages used in Educational
Robotics

The robotic artifacts programming requires programming languages specially adapted to the specific
hardware, which, due to their possible complexity, are often used at higher academic levels [17]. These
programming languages can be divided between textual programming languages [18], in which instructions
follow specified text-based syntax, and graphic or visual programming languages [19], in which instructions
are inputted in an interconnected visual block form. Some of the most representative graphic or visual
languages are Scratch, LabView, and Lego. Some common textual programming languages are C#, JavaScript,
Java, C/C++, Python, Pascal, and Lisp.

One of the most representative visual programming languages used in education is Scratch [20], which is
intended for children and teens between the ages of 8 and 16. This language facilitates the autonomous
learning of basic programming concepts. In Scratch, routines are built like a puzzle by interlinking blocks
representing instructions. The edge of these blocks represents how they can be combined with other

https://doi.org/10.17081/invinno.9.1.3957

Carlos Alejandro Ruíz Ramírez, Diana María Montoya Quintero, Jovani Alberto Jiménez Builes10

Revista Investigación e Innovación en Ingenierías, vol. 9, n°1, pp. 7-21, 2021 DOI: https://doi.org/10.17081/invinno.9.1.3957

blocks, making it easier to prevent syntax errors. Scratch has no user-defined functions and no additional
data structures that can be used to store information.

Alternatively, the programming environment was included with the Lego EV3 device, which was developed
jointly using Lego and LabVIEW. This is a fast-learning language; however, it is intended for primary
education students [15]. The EV3 environment includes a number of interconnectable boxes that perform
specific tasks. In this environment, green blocks represent action blocks, orange blocks let users control
a program’s flow, yellow blocks operate sensors and read data, red blocks operate on data, blue blocks
perform advanced activities, and cyan blocks represent user-defined functions. Each box has a unique
image that identifies the action performed and its configuration parameters.

Finally, National Instruments’ LabVIEW is an example of a graphical programming environment. This is
a visual development environment where interconnecting parameter-driven blocks conduct actions.
Applications built in LabVIEW use a graphical user interface (GUI) to generate dashboards through which
they can manage and monitor events. LabVIEW necessitates technical expertise because it allows for the
construction of highly complex and versatile programs [21]. However, its high cost limits its use in industrial
environments.

Nonetheless, several general-purpose programming languages, such as Java, C, C++, and Python, have
been adapted to specific robotics hardware [22]. These programming languages generally do not involve
additional costs since their software applications can be implemented for free on different hardware
devices (See Table 1)..

Table 1. List of Some Programming Languages used in Educational Environments for the Teaching of
Robotics

Language Input Programming Paradigm Compatible Robotic Devices and Implementation

C Textual Imperative

Lego EV3 (ev3dev)

Lego NXT (RobotC)

Arduino

PIC (PICC)

Raspberry Pi (GCC)

C++ Textual Object Oriented Lego EV3 and NXT (C4Ev3)

Raspberry Pi (G++)

JAVA Textual Object Oriented Lego EV3 and NXT (Lejos)

Raspberry Pi (OpenJDK)

Python Textual Multiparadigm Lego EV3 (Ev3dev)

LegoNXT (PyNXC)

Scratch Visual Imperative/Event-Driven Lego NXT (Enchanting)

Raspberry Pi

LabView Graphical Data Flow Lego EV3

Raspberry Pi

Lego Mindstorm Graphical Data Flow Lego EV3 and NXT

Open Roberta Graphical Imperative/Event-Driven Lego EV3

Fuente: [1, 14, 20].

https://doi.org/10.17081/invinno.9.1.3957

11 Comprehensive Visual Development Environment for Learning Robotics Programming

Revista Investigación e Innovación en Ingenierías, vol. 9, n°1, pp. 7-21, 2021 DOI: https://doi.org/10.17081/invinno.9.1.3957

Despite the numerous programming languages available on the market, there are still gaps in transitioning
from a visual language to a visual/graphical programming language that students must work through
gradually.

Methodology

The construction of a new visual programming environment and its corresponding components was proposed
to create an environment that enables a progressive transition between visual and textual programming
languages. A cascade model was used to construct this new environment [23]. The construction phases
defined for this development environment are as follows:

Definition of the Functional Behavior of the Platform

Students will be able to perform the following online operations through a web browser:

• Register on the platform using a username and password.

• Manage robotic devices on a platform where each robot is assigned a unique robot code and access
key.

• Synchronize robotic devices with the programming environment.

• Execute remote robot tasks.

• Build programming routines.

• Compile routines into executable machine code.

• Send this executable code to the robotic devices.

El flujo de estas actividades se encuentra en la Figura 1.

Figure. 1. Robotics Platform Student Workflow.

Source: Prepared by the Authors

Registro en la
plataforma

Es
tu

di
an

te

Configuración de
el robot

Creación del
diagrama y
codificación

Procesamiento de
Diagrama

Envío de código
hexadecimal
ejecutable

Iniciar

https://doi.org/10.17081/invinno.9.1.3957

Carlos Alejandro Ruíz Ramírez, Diana María Montoya Quintero, Jovani Alberto Jiménez Builes12

Revista Investigación e Innovación en Ingenierías, vol. 9, n°1, pp. 7-21, 2021 DOI: https://doi.org/10.17081/invinno.9.1.3957

Business Process Model and Notation (BPMN) [24] were used to represent the flow of activities executed
by the robot. The routine consisted of a series of rounded boxes representing activities, pools, lanes, and
control structures, such as logic gates, start and finish events. The boxes were interconnected using arrows
representing the corresponding execution order (See Figure 2).

Since the notation does not offer a means to represent the “For” or “While” loops from imperative
programming, if required, logical gates that “given a condition return to the desired start task” must be
used. As opposed to a custom notation, this standardized notation makes it easier for users to familiarize
themselves with a notation that may allow them to represent and provide solutions to industrial processes
in the future. Additionally, develop procedural and systematic thinking.

Figure 2. LED Flashing Diagram

Source: Prepared by the Authors

Cada actividad, representada mediante cajas redondeados, es integrada por una serie ordenada de pasos
(Ver Figura 3). Un paso representa un fragmento de código textual ejecutable que puede ser interpretado
como una acción por el robot. Los pasos pueden ser funcionalidades precargadas o fragmentos de código
que el usuario hubiera desarrollado con anterioridad.

Figure 3. Activity Steps

Source: Prepared by the Authors

A textual programming language with syntax similar to the PHP language was developed for step coding. This
language provides control statements for loops (while, for) and conditionals (if, elseif, else) and supports
user-defined functions and the declaration of data storage variables. (See Figure 4 below).

Encender
Led

Esperar
10 Segundos

Apagar
Led

Esperar
10 Segundos

Contador > 10

Aumentar
Contador

No

Si

Ro
bo

t

Iniciar

Terminar

Crear nuevo paso

Enviar a
Artefacto

Guardar
Diagrama

Cerrar
Diagrama

Pasos de Actividad:
Esperar 10 Segundos

► Esperar 10 Segundos
Borrar

Agregar otro paso

Agregar

https://doi.org/10.17081/invinno.9.1.3957

13 Comprehensive Visual Development Environment for Learning Robotics Programming

Revista Investigación e Innovación en Ingenierías, vol. 9, n°1, pp. 7-21, 2021 DOI: https://doi.org/10.17081/invinno.9.1.3957

Figura 4. Ejemplo de código fuente en un paso.

Source: Prepared by the Authors

After creating the routine and coding the steps, students can send the routines to the robots for execution
to confirm whether the desired objective is being reached. The routine was compiled and transformed into
machine code during the transmitting procedure.

Integrated Development Visual Environment Architecture

The development environment was built in four layers using the HTTP protocol. These layers are as follows:

• Front-End: Built using HTML, Javascript, and CSS, the Front-end layer manages student interaction
with the development environment. This layer includes the GUI application.

• Back-End: This layer manages web service requests and task execution. It was built following a
model-view-controller (MVC) pattern [25].

• ORM: This is a link that maps objects to existing relationships within a database.

• Database: A relational database for storing and querying data. This layer also manages student
information, robotics devices, and routines. (See Figure 5 below).

Figure 5. Development Environment Data Model

Source: Prepared by the Authors

Condicion

* identificador
* compuerta
* evaluación

Dispositivo

identificador
* clave

Rutina

identificador
*diagrama XML

Paso

identificador
* actividad

* orden

Tarea
identificador

* Código

Estudiante

identificador
* usuario

* contraseña

poseedor
de

registrador
de

codificadora
de

de

de

de

ejecutador
de

almacenada
por

poseedor de
poseedor de

de

de

https://doi.org/10.17081/invinno.9.1.3957

Carlos Alejandro Ruíz Ramírez, Diana María Montoya Quintero, Jovani Alberto Jiménez Builes14

Revista Investigación e Innovación en Ingenierías, vol. 9, n°1, pp. 7-21, 2021 DOI: https://doi.org/10.17081/invinno.9.1.3957

Device selection for Integration with a Visual Development Environment

Three robotics platforms (custom-built based on microcontrollers, a development card, and a commercial
educational robotics kit) were connected and used in the visual development environment. These
platforms were chosen based on local market availability. The robotics device requirements for project
implementation are as follows:

Code: The device must be programmable. Additionally, this programming must be conducted through a
wireless network, a serial connection, USB, or other mechanisms.

Storage and Processing: The device must support memory storage and run a virtual machine capable of
interpreting the code sent by the students. The processor used by the robotics device and its RAM, ROM or
FLASH, and EEPROM memory is assessed.

Sensor Integration. The possibility of modifying sensors using analog and digital inputs to connect equipment
that can enhance training, such as light source detectors or infrared/ultrasound obstacle detectors. The
number of analog and digital inputs is also assessed.

New Devices. The possibility to connect other devices using I2C or SPI communication buses.

Costs. Available in the local Colombian market at a commercial price under $500.

Robot Communication – Development Environment

To support the data transmission between the robot and the development environment, the communication
capabilities of the robotic devices must be considered. For this reason, the following mechanisms were
defined through REST service requests (See Figure 6):

Intermediate Device Connection. Since the robotics device lacks the ability to connect directly to the server
where the development environment is deployed, an intermediary device with an internet connection is
required for data transfers.

Direct Connection. The robotics device includes mechanisms to establish a direct connection to the server
through its network interface.

Figura 6. Diagrama de comunicación robot – servidor remoto

Source: Prepared by the Authors

Dispositivo
Embebido

Servidor

Internet

Dispositivo
Embebido

A. 1

A. 2

https://doi.org/10.17081/invinno.9.1.3957

15 Comprehensive Visual Development Environment for Learning Robotics Programming

Revista Investigación e Innovación en Ingenierías, vol. 9, n°1, pp. 7-21, 2021 DOI: https://doi.org/10.17081/invinno.9.1.3957

Preprocessing and Code Compilation

A preprocessing process is required to associate the XML file containing the routine diagram, step
information, and the various gates with the routine compilation process. The preprocessing process follows
the following phases (See Figure 7 below):

Create an association array. Database reading and XML diagram representation as an association array.

Array Representation. Two association arrays are generated in which the activity information and the
existing logic gates are included in the routine diagram. The unique identifier of the element is used as the
index of the association array.

Graph Path. The depth-first search (DFS) algorithm is used to traverse the entire BPM diagram. The scan will
determine code order in the flat text file.

Element Recognition. The elements extracted from the diagram are navigated, and their links are found
using association array indexes.

Condition Extractions. Information about the conditionals used by the logic gates and activities is retrieved
from the database.

Finally, a single-intermediate code file is built that serves as the compiler input.

Figure 7. Routine Preprocessing Process

Source: Prepared by the Authors

In the compilation process, the statements and instructions are translated into the operational code used
by the virtual machine. The compiler includes the following:

A constant definition table. Used in the translation of instructions to a numeric code.

A lexical analyzer. Tokenizes the source code received as an argument characterized by language elements.

A syntactic analyzer. Checks and analyzes the lexical analyzer output for semantics. The machine code
defines the syntactic language and the construction rules used.

A symbol table. It stores the names of the variables and functions and the scope of their declaration.

Preprocesamiento

XML2Array
XML de

diagrama

Pasos

Condiciones

Base de datos

DFS

Conexión lógica
de artefactos

Integración de
elementos

Array2Texto

https://doi.org/10.17081/invinno.9.1.3957

Carlos Alejandro Ruíz Ramírez, Diana María Montoya Quintero, Jovani Alberto Jiménez Builes16

Revista Investigación e Innovación en Ingenierías, vol. 9, n°1, pp. 7-21, 2021 DOI: https://doi.org/10.17081/invinno.9.1.3957

The robot downloads the resulting code through REST. The robot processes and executes the machine code
through a virtual machine.

Virtual Machine

Figure 8. Virtual Machine Architecture

Source: Prepared by the Authors

The virtual machine runs on a robotics device based on Harvard architecture. That is, data and instructions
are located in separate memory segments. It is also composed of a code segment, data memory, an operator
stack, input and output devices, a framework segment, an instruction processor, and a series of pointers.
The virtual memory handles the execution of the executable hexadecimal code generated at the compilation
stage. Using a virtual machine facilitates running the same executable code on different robotic devices.

Validation and Verification

All produced components are subjected to a black box validation to find and correct any potential
programming flaws. In the usability tests, five users performed a set of predefined tasks while their mouse
actions were recorded and timed. This stage concludes with a survey that determines usability ratings from
the user’s viewpoint..

Results and Discussion

Selection of Alternative Robotics Platforms

For this study, a different robotics device was selected from the three specified categories: educational
robotics kit, single-board computer, and custom design board (See Table 2).

Table 2: Single-Board Computer Feature Comparison

Raspberry PI 2 Arduino Uno R3 BeagleBone Black
Clock speed Quad-core ARM at 900 MHz 20 MHz 1 GHz ARM Crotes A8

Flash 32 GB SD Card 32 KB 4 GB on-board Flash Storage

EEPROM 0 B 1024 B 0 B

RAM 1024 MB 2048 B 512 MB

I/O Ports 26 19 63

PWM Channels 1 6 8

Analog Channels 0 6 7

Analog Port Resolution Not Applicable 10-bit 12-bit

https://doi.org/10.17081/invinno.9.1.3957

17 Comprehensive Visual Development Environment for Learning Robotics Programming

Revista Investigación e Innovación en Ingenierías, vol. 9, n°1, pp. 7-21, 2021 DOI: https://doi.org/10.17081/invinno.9.1.3957

Communications Ethernet, USB, I2C, SPI SPI, Serial USART, I2C UART, PWM, LCD, GPMC, MMC1, SPI, I2C, CAN BUS

Price 35 USD 23 USD 50 USD

USB Module Integrated External Integrated

Source: [1]

The characteristics of the Arduino UNO R3, Raspberry PI 2, and BeagleBone Black were evaluated to select
a single-board computer. After evaluating the different options, the Raspberry PI was selected due to its
sufficient computing capabilities, large number of input and output ports, possible direct connection to
the internet, internal storage, large community, and worldwide availability. The PIC 18F4550 microcontroller
built before the project was used on the development card.

The Lego Minstorm EV3 and the Bioloid Premium Kit were evaluated for the educational robotics kit. Here,
Lego Minstorm EV3 was selected because the Bioloid Premium Kit was too expensive.

Platform Implementation

LAMP stack (Linux, Apache, MySQL, PHP) was used to build the development environment, and a framework
based on the MVC architecture and the “Don’t Repeat Yourself” (DRY) philosophy was created for it. The
preprocessor and the compiler were developed as separate libraries from the framework to facilitate their
reuse. Virtual machines were built and adapted to each robotic platform’s capabilities and communication
interfaces. The CCS C compiler software was used for the microcontroller-based custom development card,
and a communication interface was built in Microsoft Windows using Python (See Figure 9), which serves as
a communications bridge between the microcontroller and the remote system. The virtual machine and the
communication interface for the Lego EV3 and Raspberry PI devices were built on Python..

Figure 9. Windows Communication Interface for Microcontroller Communications

Fuente: Elaboración propia

User Experience in the Programming Interface

Seeking to evaluate possible existing weaknesses, a population of 105 IT professionals were asked to
conduct four tasks on the platform: (1) user registration, (2) adding a robotics device, (3) creating a routine,
and (4) adding two steps to an activity. Activity times were recorded, and participants were asked three
post-execution questions. Each task took an average of (1) 2 min 57 seconds, (2) 1 min 31 seconds, (3) 36
seconds, and (4) 3 min 11 seconds, respectively (See Table 3)..

https://doi.org/10.17081/invinno.9.1.3957

Carlos Alejandro Ruíz Ramírez, Diana María Montoya Quintero, Jovani Alberto Jiménez Builes18

Revista Investigación e Innovación en Ingenierías, vol. 9, n°1, pp. 7-21, 2021 DOI: https://doi.org/10.17081/invinno.9.1.3957

Table 3. Survey Results

Question Yes No Maybe
Is this system easy to use? 97 2 6

Is this system easy to learn? 94 5 6

Would you recommend this application to another user? 95 2 8
Source: Prepared by the Authors

Conclusions

For decades, it has been evident that convenient mechanisms must be sought to integrate technology
into educational environments to facilitate and provide greater flexibility to learning processes, given the
characteristics of today’s students. The application of educational robotics, framed within constructivist
practices and classroom didactics, helps students solve problems by applying their knowledge through
dynamic, participatory, and interactive processes.

Several robotics kits are available in the market, including custom programming environments. These kits
are usually marketed to countries with advanced economies. However, the Colombian educational model
cannot accept them due to their high expenses. Additionally, their methods do not entirely meet the needs
identified by the Colombian students.

This study summarizes some of the advantages of educational robotics within this context. It also discusses
some programming language characteristics used in educational robotics. Furthermore, a programming
environment built on cloud computing and intended for robotics application educational settings is
presented. This environment bridges the gaps by allowing students to move easily from visual programming
to textual programming using multiple robotics devices in the same development environment. After
evaluating the major paradigms in the construction of computational environment representations, it was
decided to use the occupation cell mapping technique for the mathematical models of the robot, thus
validating the potential of intuitive methods in controller design.

The system was tested in indoor environments such as hallways, offices, laboratories, and classrooms. The
models obtained were adjusted both to the morphological characteristics of the test environments and
their characteristic metrics.

Referencias bibliográficas

1. C. A. Ruiz, “Ambiente de desarrollo integrado de programación híbrida visual/textual integrado con
artefactos robóticos para el aprendizaje la enseñanza de áreas STEM a través de programación de
computadores”. Tesis de Maestría en Ingeniería, Universidad Nacional de Colombia, 2019.

2. G. A. Wiggins y A. Smaill, Musical Knowledge: what can Artificial Intelligence bring to the musicians?
2000.

3. J. Prentzas, “Artificial intelligence methods in early childhood education”, en Artificial Intelligence,
Evolutionary Computing and Metaheuristics, Springer, 2013, pp. 169–199. DOI: https://doi.
org/10.1007/978-3-642-29694-9_8

4. Y.-W. Cheng, P.-C. Sun, y N.-S. Chen, “The essential applications of educational robot: Requirement
analysis from the perspectives of experts, researchers and instructors”, Comput. Educ., vol. 126, pp.
399-416, nov. 2018. DOI: https://doi.org/10.1016/j.compedu.2018.07.020.

https://doi.org/10.17081/invinno.9.1.3957
https://doi.org/10.1007/978-3-642-29694-9_8
https://doi.org/10.1007/978-3-642-29694-9_8
https://doi.org/10.1016/j.compedu.2018.07.020

19 Comprehensive Visual Development Environment for Learning Robotics Programming

Revista Investigación e Innovación en Ingenierías, vol. 9, n°1, pp. 7-21, 2021 DOI: https://doi.org/10.17081/invinno.9.1.3957

5. C. Angeli y N. Valanides, “Developing young children’s computational thinking with educational
robotics: An interaction effect between gender and scaffolding strategy”, Comput. Hum. Behav., vol.
105, p. 105954, abr. 2020. DOI: https://doi.org/10.1016/j.chb.2019.03.018.

6. M. Prensky, “Digital natives, digital immigrants part 1”, Horiz., vol. 9, no 5, pp. 1–6, 2001. DOI: https://
doi.org/10.1108/10748120110424816.

7. M. Prensky y B. D. Berry, “Do they really think differently”, Horiz., vol. 9, no 6, pp. 1–9, 2001. DOI:
https://doi.org/10.1108/10748120110424843

8. B. De Wever, P. Mechant, P. Veevaete, y L. Hauttekeete, “E-Learning 2.0: social software for educational
use”, Multimedia Workshops 2007 ISMW’07. Ninth IEEE International Symposium on, 2007, pp. 511–516.
DOI: https://doi.org/10.1109/ISM.Workshops.2007.91

9. F. Fovet, “Impact of the use of Facebook amongst students of high school age with Social, Emotional
and Behavioural Difficulties (SEBD)”, 2009 39th IEEE Frontiers in Education Conference, 2009, pp. 1–6.
DOI: https://doi.org/10.1109/FIE.2009.5350786

10. Papert, Mindstorms: Children, Computers, and Powerful Ideas, Edición: New Ed. New York: The
Perseus Books Group, 1993. DOI: https://doi.org/10.1145/1045071.1045074

11. M. Ruzzenente, M. Koo, K. Nielsen, L. Grespan, y P. Fiorini, “A review of robotics kits for tertiary
education”, Proceedings of International Workshop Teaching Robotics Teaching with Robotics:
Integrating Robotics in School Curriculum, 2012, pp. 153–162. DOI: https://doi.org/10.1007/s10798-012-
9210-z

12. A. Larcher., F. Turri, J. Collins, I. Derweesh, A. Volpe, J. Kaouk, R. Koon, “Definition of a structured
training curriculum for robot-assisted partial nephrectomy: A Delphi-consensus study from the
ERUS Educational Board”, Eur. Urol. Suppl., vol. 17, n.o 2, pp. e678-e682, mar. 2018. DOI: https://doi.
org/10.1016/S1569-9056(18)31310-1.

13. N. Reich-Stiebert, F. Eyssel, y C. Hohnemann, “Involve the user! Changing attitudes toward robots by
user participation in a robot prototyping process”, Comput. Hum. Behav., vol. 91, pp. 290-296, feb.
2019. DOI: https://doi.org/10.1016/j.chb.2018.09.041.

14. B. S. Blais, “Using Python to Program LEGO Mindstorms Robots: The PyNXC Project”, Python Pap.,
2010.

15. S. Seiler, R. Sell, y D. Ptasik, “Embedded System and Robotic Education in a Blended Learning
Environment Utilizing Remote and Virtual Labs in the Cloud, Accompanied by ‘Robotic HomeLab Kit’”,
Int. J. Emerg. Technol. Learn. IJET, vol. 7, no 4, dic. 2012. DOI: https://doi.org/10.3991/ijet.v7i4.2245

16. X. Xie, C.-C. Huang, Y. Chen, y F. Hao, “Intelligent robots and rural children”, Child. Youth Serv. Rev., vol.
100, pp. 283-290, may 2019. DOI: https://doi.org/10.1016/j.childyouth.2019.03.004.

17. C. Fernández-Llamas, M. A. Conde, F. J. Rodríguez-Lera, F. J. Rodríguez-Sedano, y F. García, “May I teach
you? Students’ behavior when lectured by robotic vs. human teachers”, Comput. Hum. Behav., vol. 80,
pp. 460-469, mar. 2018. DOI: https://doi.org/10.1016/j.chb.2017.09.028.

18. M. Campusano, J. Fabry, y A. Bergel, “Live programming in practice: A controlled experiment on state
machines for robotic behaviors”, Inf. Softw. Technol., vol. 108, pp. 99-114, abr. 2019. DOI: https://doi.
org/10.1016/j.infsof.2018.12.008.

19. B. Jost, M. Ketterl, R. Budde, y T. Leimbach, “Graphical Programming Environments for Educational
Robots: Open Roberta - Yet Another One?”, 2014 IEEE International Symposium on Multimedia, 2014,
pp. 381–386. DOI: https://doi.org/10.1109/ISM.2014.24

https://doi.org/10.17081/invinno.9.1.3957
https://doi.org/10.1016/j.chb.2019.03.018
https://doi.org/10.1108/10748120110424816
https://doi.org/10.1108/10748120110424816
https://doi.org/10.1108/10748120110424843
https://doi.org/10.1109/ISM.Workshops.2007.91
https://doi.org/10.1109/FIE.2009.5350786
https://doi.org/10.1145/1045071.1045074
https://doi.org/10.1007/s10798-012-9210-z
https://doi.org/10.1007/s10798-012-9210-z
https://doi.org/10.1016/S1569-9056(18)31310-1
https://doi.org/10.1016/S1569-9056(18)31310-1
https://doi.org/10.1016/j.chb.2018.09.041
https://doi.org/10.3991/ijet.v7i4.2245
https://doi.org/10.1016/j.childyouth.2019.03.004
https://doi.org/10.1016/j.chb.2017.09.028
https://doi.org/10.1016/j.infsof.2018.12.008
https://doi.org/10.1016/j.infsof.2018.12.008
https://doi.org/10.1109/ISM.2014.24

Carlos Alejandro Ruíz Ramírez, Diana María Montoya Quintero, Jovani Alberto Jiménez Builes20

Revista Investigación e Innovación en Ingenierías, vol. 9, n°1, pp. 7-21, 2021 DOI: https://doi.org/10.17081/invinno.9.1.3957

20. J. Maloney, M. Resnick, N. Rusk, B. Silverman, y E. Eastmond, “The Scratch Programming Language
and Environment”, ACM Trans. Comput. Educ., vol. 10, no 4, pp. 1–15, nov. 2010. DOI: https://doi.
org/10.1145/1868358.1868363.

21. J. M. Gomez-de-Gabriel, A. Mandow, J. Fernandez-Lozano, y A. J. Garcia-Cerezo, “Using LEGO NXT
Mobile Robots With LabVIEW for Undergraduate Courses on Mechatronics”, IEEE Trans. Educ., vol. 54,
no 1, pp. 41–47, feb. 2011. DOI: https://doi.org/10.1109/TE.2010.2043359

22. R. U. Pedersen, J. Nørbjerg, y M. P. Scholz, “Embedded Programming Education with Lego
Mindstorms NXT Using Java (leJOS), Eclipse (XPairtise), and Python (PyMite)”, Proceedings of the 2009
Workshop on Embedded Systems Education, New York, NY, USA, 2009, pp. 50–55. DOI: https://doi.
org/10.1145/1719010.1719019

23. W. W. Royce y others, “Managing the development of large software systems”, en proceedings of IEEE
WESCON, 1970, vol. 26, pp. 1–9. DOI: https://doi.org/10.4236/cus.2018.62015 1,006

24. S. A. White, “Introduction to BPMN”, IBM Coop., vol. 2, no 0, p. 0, 2004.

25. G. E. Krasner y S. T. Pope, “A Cookbook for Using the Model-view Controller User Interface Paradigm
in Smalltalk-80”, J Object Oriented Program, vol. 1, no 3, pp. 26–49, ago. 1988.

https://doi.org/10.17081/invinno.9.1.3957
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1109/TE.2010.2043359
https://doi.org/10.1145/1719010.1719019
https://doi.org/10.1145/1719010.1719019
https://doi.org/10.4236/cus.2018.62015

