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Abstract 

Objective: Accelerate the process of merging satellite images using a massive parallel processing 
model based on heterogeneous computing (CPU / GPU). Methodology: To fulfill this purpose, a 
parallel-heterogeneous implementation of the Brovey transform was performed. The implementation 
was evaluated with a set of images of 4 different sizes and compared against a sequential CPU 
implementation. Results: A Speed-up of up to 532X was evidenced in the fusion process of an 8192-
pixel image. Regarding the quality of the image obtained, when obtaining the correlation coefficient 
between the merged image and the panchromatic image, an average spatial detail per band of 0.9714 
was obtained in a color space (R, G, B). The implementation is available at https://github. com/Parall-
UD/ParallelBrovey-Transform. Conclusions: This project demonstrated that massive parallel 
programming on heterogeneous CPU / GPU platforms represents an effective solution to the high 
computational demand of the satellite image fusion process without affecting the image quality 
obtained, compared to sequential solutions.

Keywords: Satellite-image fusion, Brovey transform, Parallel processing, Mathematical-statistics, 
Multispectral image, Panchromatic image.

Resumen 

Objetivo: Acelerar el proceso de fusión de imágenes satelitales mediante un modelo de procesamiento 
paralelo masivo basado en computación heterogénea (CPU/GPU). Metodología: Para cumplir este 
propósito, se realizó una implementación paralela-heterogénea de la transformada de Brovey. La 
implementación se evaluó con un conjunto de imágenes de 4 tamaños diferentes y se comparó frente 
a una implementación secuencial en CPU. Resultados:  Se evidenció un Speed-up de hasta 532X en 
el proceso de fusión de una imagen de 8192 píxeles. En cuanto a calidad de la imagen obtenida, 
al obtener el coeficiente de correlación entre la imagen fusionada y la pancromática, se obtuvo un 
promedio de detalle espacial por banda del 0.9714 en un espacio de color (R,G,B). La implementación 
se encuentra disponible en https://github.com/Parall-UD/ParallelBrovey-Transform.                                                Conclusiones: Se 
demostró que la programación paralela masiva en plataformas heterogéneas CPU/GPU representa 
una solución efectiva a la alta exigencia computacional del proceso de fusión de imágenes satelitales 
sin afectar la calidad de la imagen obtenida, comparada con soluciones secuenciales. 

Palabras clave: Imágenes satelitales, Fusión, Transformada Brovey, Procesamiento en paralelo, 
Matemáticas-Estadísticas, Imagen Multispectral, Imagen Pancromática.
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Introducción

Image processing is aimed at improving image quality so that relevant information can be detected, 
boosting pattern and feature recognition [1]. When taking an image as the starting point for data processing, 
it is possible to improve image quality by applying several processes, e.g. pixel-by-pixel operations, 
segmentation, brightness adjustments, contrast calibration, equalization, filtering, and image fusion. In 
[2], a literature survey gathered a set of techniques addressing image processing at a pixel level for tele-
detection. These techniques were based on Principal Component Analysis (PCA), Intensity-Hue-Saturation 
(IHS), the Brovey transform, and the Wavelet transform among others. The studies conclude that image 
processing methods have a significant impact on the quality of the resulting (processed) images.

Image fusion combines relevant information from a given set of images to produce a single image that 
exhibits higher quality when compared to any of the original images. For satellite image fusion it is necessary 
to provide a Panchromatic image, which has high spatial resolution, and a Multispectral image, which is 
has considerable spectral information [3]. In [4], a study was conducted employing seven image-fusion 
techniques. The effectiveness of the techniques was assessed using both quantitative and qualitative 
metrics. Based on a series of statistical metrics, the Wavelet transformed was found to be the most effective 
technique, followed by the Brovey transform. Moreover, in [5], the Fast Haar Wavelet Transform (FHWT) was 
identified as an excellent technique for satellite image fusion, achieving the best performance in several 
metrics such as the correlation coefficient, the Relative average spectral error, the ERGAS metric, and the 
Universal Quality index Qu.

The capacity of parallel computing using Graphic Processing Units (GPUs) has raised an increasing interest 
among researchers and engineers studying high-performance computing [6]. For example, in [7], a search 
for electromagnetic emission sources was proposed based on interferometric data obtained from spectral-
line radio-astronomy using parallel programing techniques; a 3.2 times faster processing was achieved 
when compared to the CPU process alone. Other studies [8] proposed an image-fusion algorithm employing 
convolution-based neural networks by means of a parallel processing architecture; results were compared 
to those obtained with traditional methods, showing an improvement in the network’s training time and 
satisfactory quality of the fusion process. When conducting satellite image fusion, the goal is to cover 
large areas of land. To this end, large-scale images are used, which significantly increases the processing 
time when employing a serial architecture. For example, in [9], assumptions are made about accelerating 
processing techniques, such as super-resolution (SR), by using GPU parallel processing.

This paper presents preliminary results on satellite image fusion employing the Brovey transform along 
with spectral richness calibration using a CPU/GPU heterogeneous computing architecture. To guarantee 
correlation and quality, both spectral and spatial, several statistical metrics are assessed, such as the 
correlation coefficient, the Universal Image Q index, as well as the ERGAS and Bias tests [10]. The purpose of 
employing this method using a parallel processing architecture is to reduce the time necessary to complete 
the satellite image fusion stage together with the calibration of spectral richness. The type of image 
processing introduced herein is conducted using Python over the CUDA parallel processing architecture. 

This paper is organized as follows. Section 2 presents some background and related work. Section 3 
introduces the proposed methodology by parts; namely the general approach, the method, and the 
assessment procedure. Moreover, results are analyzed with regard to running times, visual comparison, 
and statistical metrics. Finally, conclusions and future works are presented.

https://doi.org/10.17081/invinno.9.2.3961
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Materials and methods

Image processing refers to a variety of techniques that maximize the usefulness of the information 
contained in an image for a particular target context [11]. In [12], image processing techniques were applied 
to assess the performance of a convolution-based neural network when classifying images in the context 
of augmented reality applications. The results were significant in terms of feature extraction and pattern 
recognition improvements, namely the image processing techniques increased classification accuracy by 
17%, which shows the importance of applying image processing techniques.

Image fusion is commonly defined as the process of combining information, extracted from two or more 
images of the same scene, to consolidate a single compound image of higher quality, which provides 
improved visual experience and better informatic processing [13]. This improvement occurs at different 
levels, namely a pixel level, a functional level and a strategic level. Satellite image fusion is commonly 
performed between a panchromatic image (PAN) and a multispectral image (MUL), which can be seen as 
a structural, functional system. The structural content is provided by the PAN, since it brings high spatial 
resolution, whereas the functional content is determined by the MUL due to its spectral richness, which 
resides in the bands [14]. As a result, when conducting satellite image fusion, spatial information is properly 
added to the multispectral image, increasing the spatial resolution while maintaining spectral richness. 
To conduct image fusion, some methods are available, such as the HIS transform, the main component 
transform, the Wavelet transform, and the Brovey transform, among others.

For this study, image fusion based on the Brovey transform is employed; this method decomposes the 
pixel space of the multispectral image into color and luminance components. Then the method computes a 
mathematical synthesis to obtain colored images and high-resolution images. Each band of colored images 
is multiplied by the color-band integrated proportion of the color field of the data in high resolution, 
resulting in an automatic re-sampling process that restores each band to a high-resolution size [15], as 
shown in (1).

(1)

where R, G, B correspond to the bands of the multispectral image, namely, red, green and blue, and PAN 
represents the data from the panchromatic image; Bandi is every newly generated band.

When conducting image fusion, typically, it is necessary to compare the original image with the processed 
image so that the intended goal can be tested. In order to evaluate the usefulness of fused images, 
compared to the original multispectral images, quantitative tests exist, such as correlation, entropy, bias 
and the universal image Q index test [10].

Another subject of study in the present paper is heterogeneous computation. At present, the development 
of processing systems has focused on producing devices with simultaneous running capabilities using 
two approaches. The first approach corresponds to the design of multi-core CPUs; the second approach 
focuses on many-thread processing systems such as GPUs (Graphic Processing Units), which optimize the 
performance by running parallelizable processes [16]. Heterogeneous computation refers to systems that 
use a variety of computation units such as CPUs, GPUs, DSPs, FPGAs [8]. For the present study, a CPU/GPU 
architecture is defined as the heterogeneous processing system. 

Parallel computing resources include a multi-core CPU as well as a multi-core GPU. In general, the CPU 
prepares and transfers the data, whereas the GPU is in charge of the arithmetic operations [17]. In [18], a 
framework for cooperative heterogeneous computation was proposed to allow an efficient use of the cores 
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of a host CPU as well as the CUDA cores intended for the GPU. As a result, the proposed framework attained 
the goals of parallel running.

Based on the previous description, two main topics are identified for the present study; namely image 
processing using satellite image fusion techniques based on the Brovey transform, and heterogeneous 
processing using a CPU/GPU architecture. By combing these two topics in [19], a method for satellite image 
fusion was proposed based on a deep multichannel model. The experimental stage of this model involved 
a CPU/GPU architecture. The proposed model significantly improved the quality of the fusion process when 
compared to other methods in the literature. In [20], real-time parallel algorithms were proposed based on 
multi-GPUs intended for the processing of medical images. One of the proposed algorithms resulted in image 
processing 265 times faster than its serial CPU counterpart; another algorithm showed an improvement of 
667 times faster processing compared to the host CPU implementation.

In this context, the present study is aimed at implementing the Brovey transform as the satellite image fusion 
method along with a spectral calibration stage. This proposal is conducted using a CPU/GPU heterogeneous 
computing architecture so that running times can be compared to their serial processing counterparts. The 
results are also compared in terms of visual evaluation and statistical index assessment.

This section introduces the stages of this study by presenting a general approach, the implementation of 
the Brovey transform, and the assessment criteria.

General Approach

process of satellite image fusion using the Brovey transform with spectral calibration.  The implementation 
of such a method for image fusion is conducted using both serial processing (CPU only) and parallel 
processing (CUDA-driven CPU/GPU heterogeneous computing architecture). In order to implement the 
Brovey transform, Python code is used by importing several modules such as numpy for serial processing, 
and pycuda for parallel processing. For the evaluation stage, the following items are defined: serial and 
parallel running times (i.e. execution times), resulting images after applying the Brovey transform, and the 
set of statistical indices such as correlation coefficient, Universal Image Q Index, ERGAS and Bias (Figure 1).

Figure 1. General Approach

Source: Own elaboration

https://doi.org/10.17081/invinno.9.2.3961
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Implementation of the Brovey transform

The proposed method consists in applying the Brovey transform using its typical structure. Figure 2 
presents the schematic representation of this method. The method begins with two input images, namely 
the multispectral and panchromatic images. The first image is decomposed into its RGB bands, then the sum 
of the bands is carried out. Subsequently, the Brovey transform is applied by taking each of the previously 
decomposed bands for division into the sum of the bands, then multiplying this result by 3 (scalar) and also 
by data from the panchromatic image. This process results in three new bands, namely Rn, Gn and Bn.  From 
this point onwards, a spectral calibration stage is implemented. To this end, each of the newly generated 
bands is processed to find their corresponding maximum (max) and minimum (min) values. The min value 
is subtracted from each band and the resulting data is multiplied by 255 for subsequent normalization 
(division) by the difference between the max and min values. Once the bands with spectral calibration are 
obtained, a process for concatenation of the bands is conducted, which yields the new image that holds 
the calibrated spectral richness from the multispectral image together with the spatial resolution from the 
panchromatic image. 

Figure 2. Method Model

Source: Own elaboration

For the serial implementation of the presented method, a library called skimage was used so as to load 
.TIF images of any depth. Additionally, the numpy library is employed to search the maximum and minimum 
values, which are necessary for the spectral calibration stage. This implementation is composed mainly of 
for cycles, which enclose each of the steps required to complete both the Brovey transform and the spectral 
calibration stage. 

https://doi.org/10.17081/invinno.9.2.3961
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To carry out the implementation of the Brovey transform along with the spectral calibration stage in a 
parallel fashion, the CPU is used as a multi-core device whereas the GPU is used as a many-core device over 
the a CUDA framework. Moreover, the pycuda library is required to apply this framework based on Python 
code. As the algorithm runs, libraries such as gpuarray, skcuda and ElementwiseKernel nget involved to 
allow the computation of the spectral calibration stage. Figure 3 shows the resulting CPU/GPU interaction.

Figure 3. CPU/CPU Interaction

Source: Own elaboration

Assessment

The proposed implementation was carried out using the following equipment: Intel (R) Xeon (R) CPU 
E-52697 v3 @ 2.60GHZ with NVIDIA Tesla K80 graphics card. Also, the images used for the assessment of the 
proposal were obtained from satellites IKONOS and LANDSAT. Moreover, the assessment criteria to measure 
processing performance correspond to the running time, a visual analysis, and the correlation between the 
original and the processed image. To assess correlation, the following statistical indices were computed; 
correlation coefficient, universal image quality index Q, ERGAS, Bias; also, spatial gain is measured.

Correlation coefficient

This index defines the correlation level between fused images and original images. This index is considered, 
as reliable and so has been widely used in the literature. The value of the correlation coefficient is defined 
in the interval [-1,1]; a value of 0 indicates no correlation, whereas a value of 1 indicates that the two images 
are equal. A value of -1 indicates that images are the exact opposite of one another. Equation (2) presents 
the formal description of this index [10].

                                                                      (2)

https://doi.org/10.17081/invinno.9.2.3961
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Universal Image Quality Index Qu

This index describes the quality of processed images. It is considered as a robust index since it is based on 
average values and considers the standard deviation of the data. This index is defined in the interval (0,1) 
[10]. Equation (3) describes the function to compute this index.

                                                   (3)

BIAS

This index is based on the ratio of average values obtained from the processed image and the original 
image. The optimal value for this index is 0, and the positive or negative values closer to zero represent a 
strong similarity between the images [10]. Equation (4) describes this index. 

                                                                          (4)

ERGAS

The Dimensionless Global Relative Error of Synthesis (ERGAS) has an ideal value of 0. The ERGAS index is 
expressed as a percentage and its formal function for computation can be seen in equation (5) [10].   

   (5) 

Results Analysis

Muestra la estructuración de los datos recolectados en función a los objetivos propuestos. Deben ser 
presentados de manera clara y precisa acorde al método planteado, incluya en este mismo apartado las 
tablas y figuras necesarias para presentar los resultados.

This section shows the results obtained in the present study in terms of three assessment criteria, namely 
the serial and parallel running time (execution time), the visual impact of the images obtained after applying 
the Brovey transform, and the values of the various statistical indices chosen.

Running time (execution time)

Running times are presented for each type of computational architecture, also considering the size of the 
images. Table 1 shows the average running time in milliseconds obtained from five trials per size.

https://doi.org/10.17081/invinno.9.2.3961
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Table 1. Execution Time CPU and GPU

Size CPU (ms) GPU(ms)

1024 19.85 1.42

2048 76.75 1.49

4096 311.11 1.72

8192 1437.85 2.70

Source: Own elaboration

Figure 4 shows a comparison of the running times obtained with both serial and parallel computing; the 
results corresponds to the cases shown in Table 1. This comparison uses polynomial interpolation of degree 
3 on the data.

Figure 4. Execution Time CPU vs GPU

Source: Own elaboration

In order to show the graphical behavior obtained from the Brovey transform applied on CPU/GPU 
heterogeneous computing, Figure 5 presents a detailed curve of this behavior.

https://doi.org/10.17081/invinno.9.2.3961
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Figure 5. Execution time GPU close up

Source: Own elaboration

Resulting images
This section presents the images obtained after applying the satellite image fusion process using the Brovey 
transform method. The method takes the Multispectral and Panchromatic images as input and completes 
the process by calibrating spectral richness. For every image below, a specific geographic point was selected 
so that proper zoom-in frames clearly show that the resulting image captures the spectral richness of the 
multispectral input image as well as the spatial detail of the panchromatic input image. 

Figure 6 shows the resulting image after applying the Brovey transform over images with 1024 pixels. In 
this case, a frame containing an aircraft was selected as the specific geographic point so that the spectral 
richness and the spatial detail of the image can be observed.

Figure 6. Brovey Transform with images of 1024 pixels

Source: Own elaboration

https://doi.org/10.17081/invinno.9.2.3961
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Figure 7 shows the resulting image after applying the Brovey transform over an image with 2048 pixels. The 
geographic point chosen shows three aircrafts so that spectral richness and spatial detail can be clearly 
appreciated.

Figure 7. Brovey Transform with images of 2048 pixels

Source: Own elaboration

Figure 8 shows the results of applying the Brovey transform on 4096-pixel images. The geographic point 
selected corresponds to El Dorado airport (Bogotá – Colombia). Once again, both spectral richness and 
spatial detail can be clearly observed.

Figure 8. Brovey Transform with images of 4096 pixels

Source: Own elaboration

Figure 9 shows the resulting image after applying the Brovey transform on a 8192-pixel image. The geographic 
point displays an industrial site located on the outskirts of Bogota. Here also, spectral richness and spatial 
detail can be observed.

https://doi.org/10.17081/invinno.9.2.3961
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Figure 9. Brovey Transform with images of 8192 pixels

Source: Own elaboration

Statistical indices

Table 2 shows the values obtained after computing the correlation coefficient, the Universal Image Q Index 
as well as the ERGAS and Bias indices. These indices correspond to the processed imaged when compared to 
the multispectral input image; therefore, this set of results are concerned with spectral richness. The same 
assessment process was applied to all the image sizes used in the study.

Table 2. Spectral Mathematical-statistical Indices

Size
CC band to band

Q ERGAS BIAS
R G B

1024 0.8698 0.8540 0.8578 0.54 11.81% 0.3753

2048 0.8591 0.8376 0.8270 0.43 13% 0.4316

4096 0.8984 0.8773 0.8681 0.52 23.14% 0.2582

8192 0.8542 0.8625 0.8358 0.48 25.83% 0.3248

Source: Own elaboration

Table 3, shows the values obtained after computing the correlation coefficient, the Universal Image Q Index, 
the ERGAS index and the Bias index to compare the processed image with the panchromatic input image. 
Thus, these results focus on assessing the spatial detail. As in the previous case, indices were computed for 
all image sizes in the study.

https://doi.org/10.17081/invinno.9.2.3961
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Table 3. Spatial Mathematical-statistical Indices

Size
CC band to panchomatic

Q ERGAS BIAS
R G B

1024 0.9233 0.9955 0.9913 0.7611 10.12% 0.3800

2048 0.9213 0.9458 0.9878 0.7095 11.19% 0.4231

4096 0.9987 0.9996 0.9991 0.7360 16.64% 0.2423

8192 0.9584 0.9745 0.9625 0.7232 24.59% 0.3648

Source: Own elaboration

Table 4 shows the correlation coefficients obtained when comparing the multispectral image and the 
panchromatic image so that the spatial gain can be computed.

Table 4. Correlation Coefficient Index Multispectral vs Panchromatic

Size
CC band to panchomatic

R G B

1024 0.8346 0.8648 0.8533

2048 0.8152 0.8452 0.8395

4096 0.9097 0.8761 0.8638

8192 0.8249 0.8636 0.8315

Source: Own elaboration

Spatial gain

To compute the spatial gain associated to each of the bands (between the multispectral panchromatic 
image and the processed image), the data stored in the CC band-to-panchromatic column of Table 2 is used. 
A band-to-band subtraction of the CC band-to-panchromatic values is applied to the original image using 
the data summarized in Table 4. Table 5 shows the results.

Table 5. Spatial Gain

Bands CC Image
Size

1024 2048 4096 8192

R

MUL vs PAN 0.8346 0.8152 0.9097 0.849

Fused vs PAN 0.9233 0.9213 0.9987 0.9584

Difference 0.0887 0.1061 0.0890 0.1094

G

MUL vs PAN 0.8648 0.8452 0.8761 0.8636

Fused vs PAN 0.9955 0.9458 0.9996 0.9745

Difference 0.1307 0.1006 0.1235 0.1109

B

MUL vs PAN 0.8533 0.8395 0.8638 0.8315

Fused vs PAN 0.9913 0.9878 0.9991 0.9625

Difference 0.1380 0.1483 0.1353 0.1310

Source: Own elaboration

https://doi.org/10.17081/invinno.9.2.3961
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Results analysis
Using the results presented above, the following analysis is threefold. First, the analysis focuses on running-
time performance, namely serial and parallel processing performance. Second, a visual comparison of 
results is provided. Finally, the analysis focuses on the data gathered from the set of statistical metrics.

Regarding the running-time analysis, Table 1 and Figure 4 indicate that both serial processing and parallel 
processing exhibit similar functions, namely increasing functions of the size of images. However, significant 
differences in time can be observed when comparing the performance of the two types of computing 
architecture. A detailed look at Figure 5 (the function close-up for parallel processing) confirms the 
increasing function of image size. However, such a function is only polynomial increasing with small factors, 
which indicates that significantly lower running times can be achieved with parallel computing compared 
to the serial computing of the processing algorithms. Table 6 shows how many times faster the parallel 
algorithm is compared to its serial counterpart.

Table 6. Speedup CPU/GPU

Size Speedup

1024 13.97x

2048 51.51x

4096 180.87x

8192 532.53x

Source: Own elaboration

Based on the results in Table 6, there is a clear picture of the performance improvement obtained from 
implementation of the proposed method; a satellite image fusion method running over a CPU/GPU parallel 
computing architecture. The method allows processing 8192-pixel images 532.53 times faster than in the 
case of serial image processing. Moreover, it is important to highlight that, despite obtaining an increasing 
time function of image size for parallel computing, the time-growing factors of the function do not rise 
significantly with the size of images.

Regarding the analysis focused on visual comparison, especial attention is devoted to the previously 
introduced geographical points. Fig.10 shows a visual comparison for the 1024-pixel image. Figure 10C shows 
how the fused image exhibits high spatial detail together with spectral richness. In this resulting image, the 
object can be easily recognized (the aircraft). Such an easily recognizable object appears a lot blurrier in 
the first image. Figure 10A corresponds to the original multispectral image, whereas Figure10B corresponds 
to the original panchromatic image.
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Figure 10. Specified geographical point 1024-pixel image

Source: Own elaboration

The visual comparison for the 2048-pixel image is shown in Figure 11. The resulting image of Fig.11C is 
obtained after applying image fusion. In this image, objects can be easily identified since they are well 
defined in shape and also exhibit well defined colors. Figure11A corresponds to the original multispectral 
image while Fig.11B is the original panchromatic image.

Figure 11. Specified geographical point 2048-pixel image

Source: Own elaboration

Figure 12 offers a visual comparison of the results obtained with 4096-pixel images. The geographical area 
chosen in this case corresponds to El Dorado airport (Bogota – Colombia). This set of images shows how the 
Brovey transform, along with spectral calibration (Figure 12C), allow the visualization of particular spatial 
details that are not distinguishable in Figure 12A, which corresponds to the original multispectral image; 
Figure 12B shows the original panchromatic image also for comparison purposes.
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Figure 12. Specified geographical point 4096-pixel image

Source: Authors

Finally, the visual comparison for the case of 8192-pixel images is shown in Figure 13. The geographic point 
chosen for this set of images corresponds to the industrial site located in the outskirts of Bogota. Figure 
13C exhibits great spatial detail together with color discrimination of objects due to spectral richness. 
Figure 13A corresponds to the original multispectral image and Figure 13B corresponds to the original 
panchromatic image

Figure 13. Specified geographical point 8192-pixel image

Source: Authors

This final part of the analysis focuses on the values of the statistical indices presented above. Regarding 
the spectral assessment, it can be observed that the correlation coefficient between each of the bands 
of the processed image and the original multispectral image is kept above 0.82 for every image size. This 
indicates the high level of spatial correlation between the images. Conversely, when analyzing the values of 
the Universal Image Q Index, the interval [43%, 54%] contains all the quality percentages, indicating a fairly 
poor performance in this regard. Additionally, the average values of the BIAS index add to 0.3474, a value 
near zero, which indicates a strong similarity between the images. With regard to the ERGAS coefficient, an 
average value of 18% was obtained, which corresponds to a high-quality value considering that its ideal 
value lies near zero.

In terms of spatial assessment, measured with statistical indices, it can be observed that the correlation 
coefficient for each of the bands of the processed image, compared to the panchromatic image, is maintained 
above 0.92 for every image size. This indicates a high degree of spatial correlation between the two images. 
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Also, by observing the results of the Universal Image Q Index, the values of the quality percentage lie in the 
interval [70.95%, 76.11%], which is an acceptable range of percentages. Moreover, the BIAS index yields an 
average value of 0.3525, which is also a value near zero, indicating strong similarity between the two images. 
In addition, the ERGAS coefficient has an average value of 15.63%, which corresponds to a high percentage, 
sice its ideal value should also be near zero. Finally, the spatial gain indicator of Table 7, based on the value 
of a correlation coefficient, shows the average spatial gain for each of the RGB bands.

Table 7 Spatial Gain mean values

Band Spatial Gain

R 0.0983

G 0.1164

B 0.1381

Source: Own elaboration

Conclusions

The analysis presented leads to conclude that, when evaluating image processing performance in terms of 
running time, the implementation of the proposed algorithm using the CPU/GPU heterogeneous computing 
architecture exhibits significantly shorter processing times. The reductions in processing time remain 
significant despite observing a degree-3 polynomial time-increasing function on the size of images for both 
the serial and parallel processing scenarios, at work [21] they conclude that as the image size increases, 
time increases significantly in CPU and relatively low in GPU.. Improvements can be dimensioned by 
observing specific results obtained with the serial and parallel architectures, namely, for the largest image 
size, processing time reductions led to 532.53 times faster processing, as you can see in the work done in 
[22, 23, 24]. For this particular study, when employing the Brovey transform along with a spectral richness 
calibration stage over heterogeneous processing, the size of the image has negligible impact on running 
times. This can be observed in the reduced time differences recorded in the CPU/GPU scenarios for different 
image sizes. 

The analysis derived from visual comparison between the original multispectral image, the panchromatic 
image, and the processed image indicates that the observable changes in images are significant, especially 
when comparing the resulting image with the input multispectral image. This is achieved by incorporating 
better spatial definition, leading to images in which objects can be clearly identified, also preserving and 
calibrating the spectral richness from the multispectral input image. Moreover, this level of spatial detail 
combined with a high degree of spectral richness provides a broad and detailed source of information that 
can be used in other application studies such as those on object detection, object recognition and object 
prediction. 

By gathering the values of several statistical indices used in both spatial and spectral assessment, it can 
be concluded that, for the proposed implementation, the correlation coefficient applied on a band-to-band 
basis shows no significant differences when changing the size of images. The same is true for the correlation 
coefficient in the case of the band-to-panchromatic comparison. Therefore, the size of the image has no 
direct impact on the correlation between the original images and the processed images. However, when 
comparing these two correlation indices, band-to-band vs band-to-panchromatic, it can be observed 
that, on average, the CC of the band-to-panchromatic case is higher than the band-to-band CC. Hence, the 
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panchromatic input image has a larger impact on the resulting processed image than the multispectral 
input image although the quality of the final image depends on the two input images. In terms of spatial 
gain, it is clear that every band exhibits a degree of spatial gain. However, the largest values of spatial gain 
are observable in the Blue band (B). As you can see in the works of [25, 26, 27, 28].

Satellite image fusion should be aimed at increasing spatial detail of images while maintaining the level of 
spectral components. Thus, significant contributions can be made for applications such as crop or water-
body identification, which arise permanently in agricultural and hydrology studies [25, 26, 27, 28, 29].
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