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Abstract 
 
Objective: The exploration of seismic signal detection and classification remains a vital area of research, 
owing to the vast array of signal types, sensor technologies, and vibration sources. 
Methodology: The event classification process leverages data pertaining to nodes or locations where 
seismic events cluster, along with event communities, to enhance accuracy and effectiveness. 
Results: The system underwent rigorous testing utilizing signals sourced from the La Rusia station, a 
vital component of the Colombian National Seismological Network, yielding highly promising results. 
This system’s applicability extends to incorporating new data for automated earthquake annotation and 
seamlessly recognizing events from diverse sources with remarkable precision. 
Conclusions: Operating within a supervised paradigm, the developed system autonomously selects the 
signal sets used for training and testing the classifier, relieving users of the burden of manual selection. 
 
Keywords: Complex networks, machine learning, semiautomatic signal labeling, seismic events, 
classification models 
 
Resumen 
 
Objetivo: Realizar  detección  y  clasificación  de  señales  sísmicas  continúa  siendo  un  tema  de  
investigación, dada la diversidad de tipos de señales, sensores y fuentes de vibración. 
Metodología: Para el proceso de clasificación de eventos utiliza información sobre nodos o lugares que 
aglomeran eventos sísmicos, así como también comunidades de eventos. 
Resultados: El sistema se testeó con señales provenientes de la estación La Rusia que pertenece a la 
Red Sismológica Nacional de Colombia, con  resultados  prometedores.  La  aplicabilidad  de  este  
sistema,  permite  incluir  información  nueva  para la anotación automática de sismos, así como también 
reconocer automáticamente eventos de otras fuentes. 
Conclusiones: El sistema desarrollado se basa en el paradigma supervisado, el usuario no escoge 
directamente cuál es el conjunto de señales que se utilizan para el entrenamiento y prueba del 
clasificador. 
 
Palabras clave: Redes complejas, aprendizaje de máquina, etiquetado semi-automático de señales, 
eventos sísmicos, modelos de clasificación. 
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Introduction 
 
In seismology, developments in signal processing and the detection and classification of seismic signals are 
constantly occurring [1, 2, 3, 4]. The wide spectrum of signal types, sensor technologies, and vibration sources 
underscores the active and dynamic nature of this research field [5]. 
 
A seismogram may be described as the convolution result of three different transfer functions: the 
functionality of the vibration source, the influence of the material through which the wave propagates, and 
the sensor’s response to vibrations. Additionally, different phenomena can represent vibration sources in the 
same time period, among which tectonic, atmospheric, and anthropogenic are some of the sources [6]. Several 
algorithms can perform event detection; however, there are restrictions to the generality of these systems due 
to the heterogeneous nature of recorded signals. This represents an intriguing area of study within computer 
science, aimed at developing algorithms that strive for greater generality in signal classification. 
 
Earthquakes can be understood in terms of P and S waves, whose propagation velocities provide valuable 
insights into the study of such events. Nevertheless, detection remains an ongoing research challenge due to 
the immense volume of data and signals produced by seismological networks, necessitating the development 
of an automatic detection system. Diverse systems were developed for signal processing as well as for event 
detection. These are the two areas of interest in this study. Existing approaches focus on automatic earthquake 
detection by applying machine learning schemes, a branch of artificial intelligence. Nevertheless, there is a 
heterogeneity gap due to the amount of information contained in seismic waves. Hence, the diverse array of 
sensors tasked with recording seismic events gathers information on the various types of earth structures 
encountered by the waves routed to the sensors, including different seismic events, such as those associated 
with volcanoes. Therefore, addressing this gap can be crucially linked to the challenge of predicting certain 
types of seismic events, leading to life-saving measures for several individuals. 
 
This study introduces a prototype system designed for the classification of seismic events within complex 
networks. This system forms a component of a broader architecture reliant on artificial intelligence (TagEQ) 
for seismic event classification. An overview of this architecture was initially presented by Leon et al. [7]. The 
proposed prototype system represents seismic events as a network, offering a richer dataset for automated 
event classification. This approach enables the utilization of data regarding nodes or locations where seismic 
events cluster as well as the identification of seismic event communities and other topological characteristics 
inherent in complex networks. The study introduces TagEQ-CN, a semiautomatic tagging system tailored for 
seismic signals. This system processes continuous seismograms obtained from a station, utilizing a catalog of 
seismic events alongside a network representation of these events to automate the signal classification 
process. A form of annotation is suggested, leveraging event characteristics in relation to the topology of the 
earthquake network previously established. Supervised machine learning algorithms were incorporated into 
such a system. Moreover, a corpus of signals was compiled using data gathered from La Rusia station, which is 
part of Colombia’s National Seismological Network, enabling the application of machine learning algorithms. 
To accomplish this goal, a modular system was devised to generate and annotate feature vectors extracted 
from seismic event waveforms, along with features derived from the constructed seismic network (an ETL 
module), as well as to train an automatic classifier derived from annotated signal sets (a training module). 
Automatic labeling is performed based on node characteristics, such as degree or betweenness, as well as 
whether the node is part of a group, such as a community within the network. 
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Methodology 
 
Several types of seismological classifiers have been implemented, such as self-organizing maps [8, 9], vector 
support machines [10], or neural networks [11], whose aim is to classify only a few types of signals (noise, 
local,-regional, teleseismic, and blasting earthquakes). 
 
The quest for patterns in the spatial and temporal distribution of seismic events has facilitated the discovery 
of tectonic plate boundaries, elucidated their movements within the Earth’s mantle, and enabled the 
evaluation of seismic risk [6]. Numerous studies have attempted to identify precursors of notable events by 
examining foreshocks [12], magnetic variations [13], and gas emissions [14], among others. While highly 
intriguing, most of these studies yield inconclusive prognostic outcomes. So far, they suggest the potential for 
reliably forecasting an event within a temporal range of only a few years at best [15]. 
 
Several studies exist for spatial patterns in the spatial distribution of seismic events. Abe and Suzuki [16] 
researched the spatial complexity of seismic event distribution in Southern California, revealing a fractal 
geometry commonly observed in complex nonequilibrium systems. The utilization of seismic network 
construction has emerged as a novel approach to studying the spatial and temporal intricacies of seismic 
activity. Among others, Baiesi and Paczuski [17] established earthquake networks comprising main shocks and 
aftershocks by connecting events exhibiting high correlation, revealing a scale-free structure within each 
identified cluster. Moreover, earthquake networks were constructed by Pastén et al. [18] to investigate the 
impact of the 2015 earthquake in Illapel, Chile, which had a magnitude of Mw = 8.3. Changes were observed 
in parameters such as average connectivity and intermediation, which fluctuate in response to the incidence 
of notable events. These findings provide evidence that large events indeed influence the structure of 
earthquake networks. Similarly, Chorozoglou [19] applied complex networks to detect precursor events before 
two earthquakes in Greece, demonstrating the feasibility of this method in conjunction with other measures 
for seismic risk assessment tasks. 
 
Abe and Suzuki [20] suggested that “a small-world network occupies a space between regularity and 
randomness, akin to the edge of chaos in nonlinear dynamics.” This implies that such networks exhibit both 
random and structured aspects in their interconnections. Based on what was stated by Leon [21], it was 
discovered that an earthquake network for Colombia exhibits characteristics of a small-world network, which 
is consistent with the findings of analogous studies conducted in other regions across the globe. [20]. 
 
The integration of complex network features into machine learning tasks warrants further examination [22]. 
Case studies demonstrating automatic data classification tasks using supervised, semisupervised, and 
unsupervised learning techniques based on features calculated from data representations, such as complex 
networks, are detailed in [8, 9, 10]. TagEQ-CN proposes a case immersed in the semisupervised framework. 
 
There are several packages available for analyzing and visualizing complex networks, including SNAP, Gephi, 
and GraphViz. Additionally, Python libraries such as NetworkX, developed at Stanford University, provide such 
comprehensive functionality. Currently, no software packages or computational frameworks have been 
identified specifically designed for constructing seismic networks. 
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This study aims to introduce a modular architecture capable of classifying events by utilizing single-station 
seismograms alongside a seismic catalog. This architecture applies high-level directives to annotate events and 
integrates various algorithms for feature extraction, detection, and classification from complex networks. It 
demonstrates how these components can be effectively integrated into an automatic classification system. 
 
TagEQ-CN Architecture 
 
TagEQ-CN receives a seismic event–annotated catalog with seismograms of a station for a specific time period. 
This data is used to train a machine learning algorithm. From the seismicity catalog, the system automatically 
searches for signals corresponding to each event in the seismograms and parameterizes them, generating 
feature vectors based on information derived from a complex network of earthquakes. This network is 
constructed based on Lion [21] and divides a region into square cells, where cells containing seismic events are 
selected as nodes. These nodes are then connected by edges following the temporal sequence of the events. 
This information can be utilized with any learning algorithm of choice, such as support vector machines (SVM) 
or decision forests (RF). The project is available at https://gitlab.com/danieleon1/TagEQ. 

Data Flow for the TagEQ-CN System 

The system operates using a configuration file, which serves as a guide for the system to locate the signal data, 
specify parameters for the classification algorithms, define label assignment parameters, determine the type 
of classification to be performed, and establish rules for label application. Figure 1 illustrates the data flow and 
system architecture. 

Figure 1. Data flow and system architecture 

 

Source: Prepared by the authors 
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The tasks in Figure 1 involve: 
 

• Executing preprocessing steps for continuous seismograms, extracting signals corresponding to events 
listed in the catalog, and defining rules for assigning labels to these events. 

• Creation of feature vectors based on event seismograms. 
• Establishment of classifier models based on vectors and rules defined to label events. 
• After the models are built, the label corresponding to each event is assigned by reading the seismogram 

of that particular event. 
 
 
TagEQ-CN System Modules 
 
Figure 2 illustrates the main system modules. Inputs, outputs, and the modular structure of the TagEQ-CN 
system are presented. This shows the four main modules: Configuration, ETL, Classifier training, and Automatic 
labeling. Each module operates automatically upon user prompting; however, only the Configuration and 
Automatic labeling modules require interaction for the user to deliver their respective output. Each system 
module is described in a detailed manner below. 

 

Source: Prepared by the authors 

Figure 2. TagEQ-CN system modules 
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Configuration module: The aim of this module is for the user to explicitly state the directives with which they 
want the system to classify the signals. The system encompasses two types of directives: general and machine 
learning directives. The general directives outline the locations of the seismograms, the catalog utilized, the 
storage locations for generated data (event seismograms and annotated catalogs), and the rules employed for 
annotating the data. Machine learning directives specify the type of classifier and the parameters that are 
applied to tune these classifiers. 
 
Extraction, transformation, and Loading (ETL) module: It executes all data preprocessing procedures and 
parameterizes the seismograms corresponding to events. Figure 3 illustrates the module’s general operating 
scheme. The ETL module processes the inputs (which include continuous seismograms and a seismicity 
catalog) and produces the feature vectors necessary for event classification. By utilizing the source times 
provided in the seismicity catalog, the continuous seismograms are scanned for signals associated with the 
events. Subsequently, these signals are parameterized using various techniques and the resulting feature 
vectors are stored. For the architecture proposed in the TagEQ system, programs were developed to generate 
vectors based on the following criteria: 

Figure 3. Extraction, transformation, and loading module 

 
Source: Prepared by the authors 

• Statistics: Average, variance, statistical skewness, and kurtosis are computed within 50-s windows for 
each of the three channels of the seismogram. 

• Sonogram: It calculates the averages in 50-s lapses of the energy of nine frequency bands, with a basis 
on the algorithm proposed by [23]. 

• Fractal dimension of the signal: It calculates the fractal dimension of the vertical component within a 
specified window. 

• Fractal dimension variation: It computes the variance of the fractal dimension calculated across 
different windows. 

• Covariance: It computes the covariance matrix, rectilinearity, and planarity of the signal within a 
specified window. 
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Classifier training module: For classifier training, feature vectors are extracted and matched with 
corresponding labels. This assignment is accomplished by referencing the information within the catalog of 
processed events and determining the label based on the rules specified for the seismic network. 
Subsequently, the data is labeled by resolving the directive using the seismicity catalog. The information flow 
diagram for this module is illustrated in Figure 4. 

Figure 4. Classifier training module 

 
Source: Prepared by the authors 

To construct the classifier model, a portion of the dataset is allocated for training purposes and the remaining 
segment is reserved for testing. For each classification algorithm, the parameters specified in the configuration 
file are utilized to either generate a single model or produce multiple models, from which the best-performing 
one is selected. For the TagEQ-CN system, the LibSVM libraries were employed for the SVMs [24] and the 
Ranger program was utilized for random decision forests [25, 26, 27]. 
 
Event labeling module: In this module, the system requires manual identification of the seismogram 
corresponding to the event slated for classification. Subsequently, the seismogram is parameterized, a feature 
vector is constructed, and then it is fed into the previously established model. Prediction using the trained 
classifier yields the event label. Figure 5 presents the schematic diagram of the operation of the labeling 
module. 

Figure 5. Event labeling module 

 

Seismo
gram 
Event 

 
 

Label 

Source: Prepared by the authors 
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Results 
 
The catalog used in this study comprises 51,520 events. Out of these events, only those with a magnitude 
greater than M > 2 and with sufficient seismic energy recorded at the La Rusia station were considered. In 
some instances, tests were conducted with events having a magnitude greater than M > 3. The final test set 
comprises 8,151 events with a magnitude greater than M > 2 and 502 events for M > 3. Algorithms were tested 
to conduct classification in scenarios based on event community membership, node degree, centrality, and 
number of events per node. 
 
Figure 6 depicts the events labeled based on the number of events per node and the degree of the node. For 
the number of events, the events belonging to the two cells with the highest numbers were labeled and a third 
class was utilized to label the remaining events. In the case of event degree, the events associated with the 
three nodes with the highest degrees were labeled and a fourth class was designated to label the remaining 
events. 

Figure 6. Event classification maps by membership in nodes with the highest number of events (Left) 
and by degree (right) 

 

Source: Prepared by the authors 

It is noteworthy to mention that the labeling conducted in both cases underscores the significance of the 
events transpiring in the Bucaramanga nest. It is also evident that in eastern Colombia, there exists a small 
region where numerous events converge within a single node. Regarding the degree of the cells, it is apparent 
that the cells near Bucaramanga exhibit extensive connections with other events as well as the events 
occurring further north between the departments of Cesar and Norte de Santander, along the border with 
Venezuela. 
 
Figure 7 illustrates the labeling of events belonging to the two communities with the highest number of nodes, 
along with a third class for the remaining events (left). Moreover, the figure illustrates the labeling of events 
associated with the three nodes possessing the highest centrality index in the earthquake network, 
supplemented by a fourth class for the remaining events (right). 
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Figure 7. Event classification maps by node membership of the largest event communities (left) and 
the most central nodes of the earthquake network (right) 

 

Source: Prepared by the authors 

Figure 7 demonstrates that the abstraction level required to differentiate events of diverse categories is high. 
In the case of communities (Figure 7 left), it is apparent that members of the same category, such as red, are 
dispersed across different locations and often situated close to members of other categories. This poses a 
challenge for a single station attempting to differentiate all events. The same thing occurs with the other 
community. 

Using the annotation schemes depicted in Figures 6 and 7, SVM and random forest (RF) classifiers were trained. 
This involved randomly selecting 80% of the annotated event set for training and reserving 20% as the test set. 
The accuracies and sensitivities depicted in Figures 8 and 9 were obtained using the best SVM classifier with 
varying parameters, along with an RF classifier comprising 500 trees. 

Figure 8. Accuracy of classifiers using SVMs and RFs 

Accuracy of classifiers 

 
Source: Prepared by the authors 
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Figure 9. Sensitivity of classifiers using SVMs and RFs 

Classifier sensitivity 

 
Source: Prepared by the authors 

From Figures 8 and 9, it is evident that the performance of RF is superior compared to SVM. The same 
conclusion was reached in [26], which compared the performances of SVM, RF, and a Bayesian classifier. This, 
combined with its faster training speed and ease of use, renders RF superior in performance compared to SVM. 
Nevertheless, it is worth noting that both classifiers exhibit only a minor difference in accuracy, suggesting that 
either of them could be utilized effectively. This indicates that the parameterization of the waveforms contains 
sufficient information to construct a robust classifier, even with limited training data (up to 8,151 events 
discriminated with magnitude M > 2). Out of the 51,520 events, smaller events were not examined because 
their energy levels are minimal, and they would only be detectable at this station if they were to occur in very 
close proximity. 
 
Lastly, it is noteworthy that accuracy and sensitivity levels consistently remain above 70%, with only SVM 
hovering very close to this threshold. The sensitivity in this multiclass scenario pertains to the number of items 
from one category that are correctly labeled as belonging to another category. The high percentage indicates 
that few items are mislabeled in this context. 

Conclusions 
 
The developed system operates within the supervised paradigm, albeit with a considerable degree of 
automation. Users are not directly involved in selecting the signal sets for training and testing the classifier nor 
do they assign labels to the events. Instead, labels are assigned based on a pre-existing catalog of earthquakes 
originating from an initial annotation conducted by an analyst. In addition, high-level rules defined by the user 
play a role in the labeling process. Given the level of abstraction attained by the classifier, it is conceivable that 
it could also be applied to other types of signals, such as those from landslides, explosions, or fluid movement. 
However, to employ this technique, it is necessary to create a catalog of event times and to establish some 
form of signal identification. 
 
Classifying seismic events with a single station can be immensely beneficial in situations where a large sensor 
network is unavailable. Utilizing a single station for event classification could assist an analyst in generating an 
alarm to investigate a situation based on a single acquired signal, eliminating the need to wait for signals from 
other stations. This eventually provides a preliminary report that alerts a seismological data operator with 
more comprehensive preliminary information rather than merely indicating that a signal surpassed an energy 
threshold. 
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The developed system exhibits a high degree of modularity, enabling the incorporation of new features into 
the feature vectors through the creation of additional programs capable of extracting analyzed information 
from a seismogram. 
 
The accurate results suggest that the selected parameters for representing the events in the feature vectors 
are adequate. However, to enhance the level of abstraction with events comprising diverse components and 
waveforms, additional features may be necessary. 
 
It was observed that RF and SVM classifiers performed well. The findings also suggest that RF is better suited 
for classifying seismic signals. 
 
By leveraging the high-level rules established within the catalog, analysts can swiftly pinpoint potential signals 
of interest (whether they are categorized as deep or shallow events, large or small, or belonging or not 
belonging to a specific category). This can be achieved through the integration of a detection algorithm 
alongside a classification algorithm. 
 
For future development, considering the current status as a prototype classifier, there is a proposal to enhance 
user experience by creating a user-friendly interface and to establish a comprehensive framework enabling the 
definition of high-level directives for label assignment purposes. 
 
 

References 
 
 
1. J. Akram and D. Eaton, “Adaptive microseismic event detection and automatic time picking,” vol. 15, 2012. 

2. M. Beyreuther and J. Wassermann, “Continuous earthquake detection and classification using discrete Hidden Markov 
Models,” Geophys. J. Int., vol. 175, no. 3, pp. 1055-1066, Dec. 2008, https://doi. org/10.1111/j.1365-
246X.2008.03921.x. 

3. P. B. Quang, P. Gaillard, Y. Cano, and M. Ulzibat, “Detection and classification of seismic events with progressive multi-
channel correlation and hidden Markov models,” Comput. Geosci., vol. 83, pp. 110119, Oct. 2015, 
https://doi.org/10.1016/j.cageo.2015.07.002. 

4. O. Lindenbaum, N. Rabin, Y. Bregman, and A. Averbuch, “Multi-channel fusion for seismic event detection and 
classification,” pp. 1-5, Nov. 2016, https://doi.org/10.1109/ICSEE.2016.7806088. 

5. J. Havskov and L. Ottemoller, Routine data processing in earthquake seismology: with sample data, exercises and 
software. Dordrecht; New York: Springer, 2010. 

6. T. Lay and T. C. Wallace, Modern global seismology. San Diego: Academic Press, 1995. 

7. D. Leon, H. Ordoñez, and V. Bucheli, “TagEQ: Artificial intelligence based seismic event classification system,” RISTI - 
Rev. Iber. Sist. Tecnol. Inf. vol. e27, pp. 359-370, Mar. 2020. 

8. B. Sick, M. Guggenmos, and M. Joswig, “Chances and limits of single-station seismic event clustering by unsupervised 
pattern recognition,” Geophys. J. Int., vol. 201, no. 3, pp. 1801-1813, Apr. 2015, https://doi.org/10.1093/gji/ggv126. 

Revista Investigación e Innovación en Ingenierías, vol. 9, no. 1, pp. 136–148, January–July 2021, https://doi.org/10.17081/invinno.9.1.4856 

https://doi./
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1111/j.1365-246X.2008.03921.x&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1111/j.1365-246X.2008.03921.x&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1016/j.cageo.2015.07.002&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1016/j.cageo.2015.07.002&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1109/ICSEE.2016.7806088&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1093/gji/ggv126&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.17081/invinno.9.1.4856&quot


 
147 TagEQ-CN: Classification of seismic events based on complex networks 

9. A. Kohler, M. Ohrnberger, and F. Scherbaum, “Unsupervised pattern recognition in continuous seismic wavefield 
records using self-organizing maps: Unsupervised seismic pattern recognition,” Geophys. J. Int., vol. 182, no. 3, pp. 
1619-1630, Sep. 2010, https://doi.org/l0.111l/j.1365-246X.2010.04709.X. 

10. A. E. Ruano, G. Madureira, O. Barros, H. R. Khosravani, M. G. Ruano, and P. M. Ferreira, “Seismic detection using 
support vector machines,” Neurocomputing, vol. 135, pp. 273-283, Jul. 2014, https://doi. 
org/10.1016/j.neucom.2013.12.020. 

11. S. Gentili and P. Bragato, “A neural-tree-based system for automatic location of earthquakes in Northeastern Italy,” J. 
Seismol. vol. 10, no. 1, pp. 73-89, Jan. 2006, https://doi.org/10.1007/s10950- 005-9001-z. 

12. J. McGuire, M. S. Boettcher, and T. H. Jordan, “Foreshock sequences and short-term earthquake predictability on East 
Pacific Rise transform faults,” Nature, vol. 434, no. 7032, pp. 457-461, Mar. 2005, 
https://doi.org/10.1038/nature03377. 

13. L. N. Doda, V. L. Natyaganov, and I. V. Stepanov, “An empirical scheme of short-term earthquake prediction,” Dokl. 
Earth Sci., vol. 453, no. 2, pp. 1257-1263, Dec. 2013, https://doi.org/10.1134/ S1028334X1312009X. 

14. E. Petraki, D. Nikolopoulos, D. Panagiotaras, D. Cantzos, P. Yannakopoulos, C. Nomicos, and J. Stonham, “Radon-222: 
A potential short-term earthquake precursor,” J. Earth Sci. Clim. Change, vol. 06, no. 6, p. 1, 2015, 
https://doi.org/10.4172/2157-7617.1000282. 

15. A. Donnellan, L. G. Ludwig, J. W. Parker, J. B. Rundle, J. Wang, M. Pierce, G. Blewitt, and S. Hensley, “Potential for a 
large earthquake near Los Angeles inferred from the 2014 La Habra earthquake,” Earth Space Sci., vol. 2, no. 9, p. 
378385, Sep. 2015, https://doi.org/10.1002/2015EA000113. 

16. S. Abe and N. Suzuki, “Law for the distance between successive earthquakes," J. Geophys. Res. Solid Earth, vol. 108, 
no. B2, Feb. 2003, https://doi. org/10.1029/2002JB002220. 

17. M. Baiesi and M. Paczuski, “Scale-free networks of earthquakes and aftershocks,” Phys. Rev. E, vol. 69, no. 6, p. 066106, 
2004, https://doi.org/10.1103/PhysRevE.69.066106. 

18. D. Pastén, F. Torres, B. Toledo, V. Munoz, J. Rogan, and J. A. Valdivia, “Time-based network analysis before and after 
the m w 8.3 illapel earthquake 2015 Chile,” Pure Appl. Geophys., vol. 173, no. 7, pp. 2267-2275, Jul. 2016, 
https://doi.org/10.1007/s00024-016-1335-7. 

19. D. Chorozoglou, D. Kugiumtzis, and E. Papadimitriou, “Application of complex network theory to the recent foreshock 
sequences of Methoni (2008) and Kefalonia (2014) in Greece,” Acta Geophys., vol. 65, no. 3, pp. 543-553, Jun. 2017, 
https://doi.org/10.1007/s11600-017-0039-4. 

20. S. Abe and N. Suzuki, “Earthquake networks, Complex,” in Extreme Environmental Events, R. A. Meyers, Ed. New York, 
NY: Springer New York, pp. 312-319, 2011. 

21. D. A. León, J. A. Valdivia, and V. A. Bucheli, “Modeling of Colombian seismicity as small-world networks,” Seismol. Res. 
Lett., vol. 89, no. 5, pp. 1807-1816, Sep. 2018, https://doi. org/10.1785/0220180076. 

22. T. C. Silva and L. Zhao, Machine Learning in Complex Networks. Cham: Springer International Publishing, 2016. 

23. M. Joswig, “Knowledge-based seismogram processing by mental images,” IEEE Trans. Syst. Man. Cybern., vol. 24, no. 
3, pp. 429-439, Mar. 1994, https://doi.org/10.1109/21.278992. 

24. C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 
3, pp. 1-27, Apr. 2011, https://doi.org/10.1145/1961189.1961199. 

Revista Investigación e Innovación en Ingenierías, vol. 9, no. 1, pp. 136–148, January–July 2021, https://doi.org/10.17081/invinno.9.1.4856 

file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1111/j.1365-246X.2010.04709.x&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1016/j.neucom.2013.12.020&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1016/j.neucom.2013.12.020&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1007/s10950-005-9001-z&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1007/s10950-005-9001-z&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1038/nature03377&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1038/nature03377&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1134/S1028334X1312009X&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1134/S1028334X1312009X&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.4172/2157-7617.1000282&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.4172/2157-7617.1000282&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1002/2015EA000113&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1029/2002JB002220&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1029/2002JB002220&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1007/s00024-016-1335-7&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1007/s00024-016-1335-7&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1007/s11600-017-0039-4&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1007/s11600-017-0039-4&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1785/0220180076&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1785/0220180076&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1109/21.278992&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1145/1961189.1961199&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.17081/invinno.9.1.4856&quot


 

 

  
 

148 Hugo Ordoñez Erazo, Daniel Andres Leon Vargas, Victor Andres Bucheli Guerrero 

25. M. N. Wright and A. Ziegler, “ranger: A fast implementation of random forests for high dimensional data in C++ and 
R,” J. Stat. Softw., vol. 77, no. 1, 2017, https://doi.org/10.18637/jss.v077.i01. 

26. D. Henao, A. C. Báez, and J. B. Pedroza, “Methodology to determine the feasibility of electric power generation by 
means of the wind resource,” Revista Investigación e Innovación en Ingenierías, vol. 6, No. 2, 2018, 
https://doi.org/10.17081/invinno.6.2.3108. 

27. R. Avellaneda, S. Cabrera, P. A. Martinez, and C. G. Donoso Albarracín, “Technological support for customer loyalty 
and new customer acquisition through a mobile application,” Res. Innov. Eng., vol. 5, no. 1, pp. 92-101, 2017, 
https://doi.Org/10.17081/invinno.5.1.2618. 

28. L. Dong, X. Li, and G. Xie, “Nonlinear methodologies for identifying seismic event and nuclear explosion using random 
forest, support vector machine, and naive Bayes classification,” Abstr. Appl. Anal., vol. 2014, pp. 1-8, 2014, 
https://doi.org/10.1155/2014/459137. 

Revista Investigación e Innovación en Ingenierías, vol. 9, no. 1, pp. 136–148, January–July 2021, https://doi.org/10.17081/invinno.9.1.4856 

file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.17081/invinno.6.2.3108&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.17081/invinno.6.2.3108&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.17081/invinno.5.1.2618&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.17081/invinno.5.1.2618&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1155/2014/459137&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.1155/2014/459137&quot
file://///crimson-2/Assignments/UlatusAssignments/Pending/February24/XTFJAL-2/Translator/quot;https:/doi.org/10.17081/invinno.9.1.4856&quot

