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Abstract 
Objective: To compare various artificial intelligence techniques for classifying fault-induced voltage sags 
using quantitative and qualitative criteria, alongside the analytic hierarchy process. Methodology: 
Extensive synthetic signals of fault-induced voltage sags were generated using MATLAB/Simulink 
simulations. Feature engineering included the application of transformations such as the space phasor 
model, discrete Fourier transform, and short-time Fourier transform. These transformations enabled the 
extraction of time-series, spectral, and statistical features from the signals, generating ten different 
feature sets. The most relevant features were then selected using several algorithms to optimize 
classification performance. Decision trees, support vector machines, and artificial neural networks were 
employed for classification, with performance evaluated based on computation time, storage 
requirements, accuracy, and interpretability. The analytic hierarchy process was applied to assess the 
overall suitability of each approach.  Results: Decision trees demonstrated speed, accuracy, and high 
interpretability, making them ideal for real-time applications. Support vector machines also achieved good 
accuracy but required more resources and had moderate interpretability. Artificial neural networks 
offered balanced performance with limited interpretability.  Conclusions: Among the evaluated 
algorithms, decision trees are the most suitable for real-time classification of fault-induced voltage sags. 
However, the choice of technique should align with specific application needs. Future research should 
consider additional criteria and focus on improving interpretability through explainable artificial 
intelligence techniques. 

Keywords: Machine learning, decision tree, feature engineering, electrical system failure, voltage sag, 
support vector machine, Artificial Neural Network (ANN). 

Resumen 
Objetivo: Comparar diversas técnicas de inteligencia artificial para clasificar huecos de tensión inducidos 
por fallas utilizando criterios cuantitativos y cualitativos, junto con el proceso analítico jerárquico. 
Metodología: Se generaron señales sintéticas de huecos de tensión mediante simulaciones en 
MATLAB/Simulink. La ingeniería de características incluyó transformaciones como el modelo de fasor 
espacial, la transformada de Fourier discreta y la de tiempo corto. Estas transformaciones permitieron 
extraer características temporales, espectrales y estadísticas, generando diez conjuntos diferentes. Las 
características principales fueron seleccionadas mediante algoritmos para optimizar la clasificación. Se 
utilizaron árboles de decisión, máquinas de vectores de soporte y redes neuronales artificiales, evaluando 
su rendimiento en función del tiempo de cálculo, requisitos de almacenamiento, precisión e 
interpretabilidad. El proceso analítico jerárquico se aplicó para evaluar la idoneidad general de cada 
enfoque. Resultados: Los árboles de decisión demostraron ser rápidos, precisos y altamente 
interpretables, lo que los hace ideales para aplicaciones en tiempo real. Las máquinas de vectores de 
soporte también lograron buena precisión, pero requirieron más recursos y presentaron una 
interpretabilidad moderada. Las redes neuronales artificiales ofrecieron un rendimiento equilibrado con 
una interpretabilidad limitada. Conclusiones: Entre los algoritmos evaluados, los árboles de decisión son 
los más adecuados para la clasificación en tiempo real de huecos de tensión. Sin embargo, la elección de 
la técnica debe alinearse con las necesidades específicas de la aplicación. Investigaciones futuras deberían 
considerar criterios adicionales y centrarse en mejorar la interpretabilidad mediante técnicas de 
inteligencia artificial explicable. 

Palabras claves: Aprendizaje automático, árbol de decisión, ingeniería de características, falla en el sistema 
eléctrico, hueco de tensión, máquina de v 

ectores soporte, Red Neuronal Artificial (RNA). 
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Introduction 
Power Quality (PQ) refers to the characteristics of electricity at specific points in an 
electrical system, evaluated against set reference parameters [1, 2]. Deviations from 
these parameters, known as PQ Disturbances (PQDs), can impact system users and 
are typically categorized as voltage or current quality issues [3]. The severity of 
PQDs can lead to energy inefficiency, equipment malfunction, and disruptions in 
industrial processes [4, 5], and subsequent financial losses incurred by utilities and 
end users [6]. 
 
Voltage sags, or dips, are significant due to their potential to cause equipment 
failures. These sags involve a reduction in root mean square (rms) voltage from 0.1 
to 0.9 per unit (pu) and can last from half a cycle to one minute. They are typically 
caused by faults but can also result from events like transformer energizing, motor 
starting, and heavy load switching [7]. Proper classification of fault-induced voltage 
sags is essential for the effective operation of protection systems, as different fault 
types (e.g., three-phase, two-phase to ground) produce distinct disturbance 
patterns [8, 9]. 
 
Detection and classification of PQDs, particularly voltage sags, are essential in 
modern power systems, especially with the rise of smart grids and the proliferation 
of power electronic devices, which are highly sensitive to PQDs [10, 11]. Detection 
aids in identifying the timing and location of voltage and current deviations, while 
classification assists in pinpointing the type and source of disturbances and in 
selecting suitable mitigation strategies. In addition, real-time monitoring systems 
offer synchronized, continuous, and single- or multipoint measurements that 
enable the analysis of PQD propagation and the accurate and prompt decision-
making to address PQ issues [1, 12]. 
 
The detection and classification of voltage sags, both offline and in real-time, have 
been extensively explored through various approaches. Transformation such as 
Discrete Fourier Transform (DFT) [10], Short-Time Fourier Transform (STFT) [5], 
Wavelet Transform (WT) [13], Stockwell Transform (ST) [14], Space Phasor Model 
(SPM) [15, 16], Phase Space Reconstruction (PSR) [17] have been employed in the 
feature engineering stage prior to classification. Various features have been 
extracted from these transformations for voltage sag classification, including 
statistical [18, 19], time series [20], [21], image-based [9, 15, 22], and spectral features 
[23], each offering specific advantages depending on the application and 
classification tools. 
 
The most widely used Artificial Intelligence (AI) methods for voltage sag 
classification in the literature include Artificial Neural Networks (ANN) [24], Decision 
Trees (DT) [25], and Support Vector Machines (SVM) [26]. Other relevant AI 
techniques, such as fuzzy logic [27], k-Nearest Neighbors (kNN) [28], and deep 
learning algorithms [11, 29], have also been applied. Despite the development of 
numerous structured methodologies for voltage sag detection and classification, 
research gaps remain, particularly in the reliability of indices for classifying real-
world (field) voltage sags in real-time and the physical interpretation of AI-based 
classification results [1, 30]. 
 
Given the extensive availability of AI-based tools for automatic classification, 
selecting the most suitable one, as well as fine-tuning and training these models 
for specific applications, presents a complex challenge [31–34]. The study in [8] 
introduces a set of metrics to compare various transformations and feature 
extraction techniques. Building on this work, our research extends the analysis to 
evaluate and compare the performance of several AI-based classifiers using these 
features as inputs, following a feature selection process. Moreover, a systematic 
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approach to this process is proposed based on the Analytic Hierarchy Process 
(AHP). 
 
In this context, this study implements different AI-based tools for classifying fault-
induced voltage sags, including variants of DT, SVM, ANN. The goal is to demonstrate 
the strengths and limitations of the most used approaches, offering the following 
contributions: 
 

• Formulation of quantitative and qualitative metrics, such as computation 
time, storage requirements, accuracy, and interpretability, for systematic 
assessment. 
 

• A comprehensive methodology for evaluating the suitability of different 
approaches using the AHP. 
 

 
The proposed methodology is applied to a case study for real-time applications, 
but it is flexible enough to accommodate various needs by adjusting metric weights. 
The paper is structured as follows: Section 2 reviews comparison approaches and 
AI-based voltage sag classifiers; Section 3 outlines the comparison methodology; 
Section 4 presents application results; and Section 5 concludes the study. 
 
Related works 
Comparison approaches of PQD classification 
 
Several studies have investigated various methods to compare and assess 
classification techniques for voltage sag detection and classification, particularly 
focusing on AI-based approaches. For example, the study in [31] introduces a 
method using subcomponent features with machine learning algorithms such as 
random forest, LightGBM, kNN, and XGBoost. This approach demonstrates high 
accuracy and efficiency, even under noisy conditions, highlighting the importance 
of feature selection and optimization for reliable results. Similarly, [32] compares 
wavelet transforms for feature extraction, evaluating classifiers including DT, SVM, 
and kNN. SVM is identified as the most accurate, though further optimization is 
needed for better PQD classification. 
 
In addition, [33] examines deep learning models, including Convolutional Neural 
Networks (CNN), Long Short-Term Memory (LSTM) networks, and hybrid CNN-LSTM 
models, finding that hybrid CNN-LSTM models offer superior classification accuracy 
compared to standalone CNN or LSTM models, especially with real-world 
measurements. Furthermore, [34] proposes a hybrid approach combining the ST 
with kNN, DT, and SVM, and employs optimization techniques like genetic 
algorithms and Competitive Swarm Optimization (CSO). This ST-based CSO-SVM 
model is noted for its robustness against noise, making it highly effective for real-
world PQD classification. 
 
From the literature reviewed, it is evident that most comparison approaches focus 
primarily on accuracy as a single metric, with some consideration of reliability in 
noisy environments. However, given the diverse applications of these tools, such as 
real-time PQD mitigation, off-line data categorization, and trend analysis, a more 
comprehensive and multidimensional assessment of classification tools is 
essential. 
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AI methods for voltage sag classification 
 
Given that the most widely used AI methods for voltage sag classification include 
ANN, DT, and SVM [1], this article focuses on these tools. Each method offers unique 
advantages and challenges, making their comparative analysis crucial for 
understanding their suitability in different scenarios. 
 
DT are knowledge-based systems developed through inductive inference, providing 
simplicity, efficiency, and clear physical interpretation, which are beneficial for 
real-time applications. Despite their widespread use for classifying various PQDs, 
DT are less commonly applied to voltage sag classification. Some variants such as 
random forest have been used and they are often employed in ensemble models, 
serving as weak classifiers combined with other methods [28, 35, 36]. 
 
SVM are robust supervised learning models used for classification and regression. 
They function by maximizing the margin between classes, which makes them 
effective even with limited training data, an advantage in PQD detection and 
classification. SVM have been extensively applied to PQD and voltage sag 
classification [36–38]. Variants of SVM, such as multiclass SVM [39], least square 
SVM [40], rank SVM [41], and directed acyclic graph SVM [42], further expand their 
application. 
 
ANN are computational models inspired by the human brain, consisting of 
interconnected neurons that process signals through weights. They are capable of 
modeling complex nonlinear functions with extensive operations. Shallow ANN, 
including input, hidden, and output layers, are used for classification tasks. Various 
shallow ANN, such as learning vector quantization [43], probabilistic neural 
networks [44], radial basis functions [45], multilayer perceptron [46], feedforward 
networks [47], backpropagation networks [48], and extreme learning machines [49], 
are used for voltage sag and multiple PQD classification. 
 
Methodology 
 
As outlined in [1], the comprehensive approach to monitoring and analyzing PQDs 
involves four primary stages: (i) input space, (ii) preprocessing, (iii) feature 
engineering, and (iv) decision space. Each stage encompasses specific steps: 1. 
input data preparation (i), 2. data preprocessing (ii), 3. transformation (iii), 4. feature 
extraction (iii), 5. feature selection (iii), 6. detection (iv), 7. classification (iv), and 8. 
characterization (iv). It is worth noting that not all steps are mandatory in every 
scenario, allowing the framework to be flexible and adaptable to a variety of 
applications. 

In [8], steps 1 through 4 are addressed for the characterization of fault-induced 
voltage sags, including a comparative analysis of various transformations and 
feature extraction methods. Building on those preliminary results, and with some 
adaptations as described later, this study focuses on implementing feature 
selection techniques and AI-based classifiers, specifically steps 5 and 7, to perform 
the classification. A comparative analysis of these classifiers is then conducted 
using a proposed AHP-based approach. 

The complete methodology for executing these stages and comparing different 
classifiers is illustrated in Figure 1. 
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Figure 1. Combinations of applied approaches for voltage sag classification 

 

Source: own elaboration 

Input data preparation and preprocessing 

In the initial step, synthetic time-domain discrete signals are generated by 
simulating fault-induced voltage sags using the Simulink model shown in Figure 2, 
and a MATLAB script is used to systematically conduct the simulations, as outlined 
in [8]. Ten types of voltage sags are simulated, corresponding to the fault types 
listed in Table 1. For each fault type, 100 simulations are performed, varying the 
fault location and duration randomly along Line 1, resulting in a total of 1,000 
simulations. Consequently, a dataset comprising 3,000 voltage signals (1,000 per 
phase) is produced. Each voltage signal covers 10 cycles at 60 Hz, sampled at a 
frequency of 60 kHz (with a 10-μs time step), resulting in 10,000 discrete values per 
signal. The voltage signals are then normalized and expressed in per unit (pu) for 
consistency. 

To further assess the classifiers’ performance, random white Gaussian noise is 
introduced to the signals, simulating a noisy environment. The Signal-to-Noise 
Ratio (SNR) is set at 50 dB, a value commonly used in literature [10, 14] to evaluate 
the reliability of PQD classifiers under simulated conditions. 
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Figure 2. Scheme implemented in Simulink for voltage sag simulation 

 

Source: adapted from [8]. 

Table 1. Classification of voltage sags according to the fault type 

Fault type Voltage sag type 

Three-phase abcG 

Two-phase to ground (phases a, b) abG 

Two-phase to ground (phases a, c) acG 

Two-phase to ground (phases b, c) bcG 

Two-phase (phases a, b) ab 

Two-phase (phases a, c) ac 

Two-phase (phases b, c) bc 

Single-phase to ground (phase a) aG 

Single-phase to ground (phase b) bG 

Single-phase to ground (phase c) cG 

Source: adapted from [8] 

Transformation and feature extraction 

Transformations, including SPM, DFT, and STFT, are implemented in MATLAB and 
applied to the signals as outlined in [8]. Subsequently, a variety of statistical, time-
series, and spectral features are computed from the transformation coefficients. 
Additionally, features are extracted directly from the original time-series signals to 
evaluate the outcomes without any transformation. The combinations of applied 
transformations and extracted features, along with their graphical representation 
for clarity, are summarized in the feature engineering process depicted in Figure 2. 
This figure outlines the foundational work detailed in [8], where more 
comprehensive information can be found. 

Beyond the feature sets developed in [8], new sets (3, 4, and 5) are proposed in this 
study to enhance the classification performance of the SPM. These sets are 
designed by extracting statistical indices from both the real and imaginary parts of 
the transformation. 
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Figure 3. Applied transformations and feature extraction techniques 

 

Source: own elaboration 

Feature selection 

After generating the feature sets, a feature selection process is implemented to 
optimize the trade-off between the number of features and classification accuracy. 
This process is carried out using MATLAB’s Classification Learner App, which applies 
several algorithms: 

• Minimum Redundancy Maximum Relevance (MRMR): This algorithm 
sequentially selects features that minimize redundancy and maximize 
relevance, enhancing the efficiency of the model. 

• Chi-square: This approach tests each predictor’s independence from the 
response variable through individual chi-square tests, ranking features 
based on their p-values, with lower p-values indicating greater significance. 

• ReliefF: The ReliefF algorithm ranks features by evaluating their importance 
in supervised models that utilize distance metrics, focusing on the 
proximity between pairs of observations to estimate feature relevance. 

• Analysis of Variance (ANOVA): ANOVA performs a one-way analysis of 
variance for each predictor variable, grouping them by class and ranking 
features according to the p-values derived from the test statistics. 

• Kruskal Wallis: This method ranks features using p-values from the Kruskal-
Wallis test, assessing whether the medians of the populations from which 
grouped predictor values are drawn are statistically equivalent. 

The feature selection process is systematically applied to each of the ten feature 
sets (see Figure 2) using these algorithms. Features consistently receiving the 
lowest rankings across the six selection methods are candidates for elimination. 
However, this elimination is critically evaluated on a case-by-case basis, ensuring 
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that essential features are not discarded. These methods provide a comprehensive 
toolkit for refining the feature set, ultimately improving the classification model’s 
performance. 

Classification 

Subsequently, fault-induced voltage sags are classified in the decision space using 
AI-based tools such as DT, SVM, and ANN. These classifiers are implemented within 
MATLAB’s Classification Learner App, utilizing the coefficients derived from each of 
the ten feature engineering approaches. During the training phase, each feature 
engineering approach is paired with a set of selected features obtained through 
various feature selection algorithms as described above. This process results in the 
development of three classifiers, DT, SVM, and ANN, for each feature engineering 
approach. 

Framework for comparison 

The classification methods for voltage sags result in a total of 30 different 
approaches, encompassing three types of classifiers (DT, SVM, and ANN), each 
trained with 10 distinct feature sets. The effectiveness of these classifiers is 
assessed through both quantitative and qualitative metrics, as shown in Figure 4. 
These metrics are further elaborated below:  

• Computation time: This metric includes both the training and prediction 
phases. Additionally, prediction time can be further divided into the time 
required for feature engineering and the time for classification. 

• Storage requirements: This parameter refers to the amount of memory 
needed to store the models and their respective parameters, particularly 
important for real-time or embedded applications where resources may be 
limited. Moreover, the number of required input features is also directly 
related to storage needs.  

• Accuracy: This aspect evaluates the precision of the classifiers in correctly 
identifying the type of fault-induced voltage sag. It is one of the most 
critical performance metrics, as higher accuracy leads to more reliable fault 
detection and classification. 

• Interpretability: This criterion assesses how easily the results can be 
interpreted and whether they provide a clear, physical explanation of the 
phenomena. Key aspects of interpretability include simplicity, 
transparency, and consistency of the results. 

Figure 4. Performance metrics for comparing AI-based classifiers. 

 

Source: own elaboration 

To quantify the overall suitability of the classifiers for voltage sag classification, the 
AHP is employed. The AHP assigns weights to each of the quantitative and 
qualitative aspects, resulting in a final score for each method. These weights can 
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be adjusted based on the specific requirements of the application under 
consideration. For instance, in real-time applications, computation time and 
storage requirements might be given greater emphasis. In such cases, computation 
time is critical for achieving real-time performance, while storage requirements are 
essential for potential implementation in dedicated hardware. 

Results 

This section presents and discusses the outcomes of the feature selection (step 5) 
and classification (step 7) processes, along with an AHP-based comparison of the 
methods. The selected features, as determined by the feature selection process, 
are summarized in Table 2. 

Table 2. Set of selected features 

Original feature engineering 

approach 

Transf. Selected features 1 

(Time-domain and 

spectral) 

Selected 

features 2 

(Statistical) 

Total of 

selected 

features* 

1: No transf. + Euclidean 

distance + (variance, 

skewness, kurtosis) 

-- Euclidean distance Variance 6/9 

Kurtosis 

2: SPM + Euclidean distance + 

(variance, skewness, kurtosis, 

min) 

SPM Euclidean distance Variance 4/4 

Skewness 

Kurtosis 

Minimum 

3: SPM + real part + (variance, 

skewness, kurtosis) 

SPM Real part Variance 3/3 

Skewness 

Kurtosis 

4: SPM + imaginary part + 

(variance, skewness, kurtosis) 

SPM Imaginary part Variance 3/3 

Skewness 

Kurtosis 

5: 3 and 4 SPM Real part Variance 4/6 

Kurtosis 

Imaginary part Variance 

Kurtosis 

6: DFT + (fund. magnitude, 

fund. phase angle, THD) 

DFT Fund. mag. -- 6/9 

Fund. phase -- 

7: STFT + fund. magnitude + 

(variance, skewness, kurtosis, 

min) 

STFT Fund. mag. Minimum 3/12 

8: STFT + fund. phase + 

(variance, skewness, kurtosis) 

STFT Fund. phase Variance 6/9 

Kurtosis 

9: STFT + THD + (variance, 

skewness, kurtosis, max) 

STFT THD Skewness 6/12 

Maximum 

10: 7, 8, and 9 STFT Fund. mag. Minimum 6/33 

THD Maximum 

* Number of selected features over the total number of features of the original approach. 

Source: own elaboration 
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Results in Table 2 show that, in most approaches, statistical features are calculated 
for each phase of the voltage signal. For example, in the first feature engineering 
approach, variance and kurtosis of the Euclidean distance for each phase are 
identified as relevant features, resulting in a total of six selected features (variance 
and kurtosis for each of the three phases). 

In contrast, when the SPM is employed as the transformation, the three-phase 
signals are consolidated into a single signal. Consequently, statistical metrics are 
computed only for this unified signal. As an illustration, in feature engineering 
approach 2, four features are selected: variance, skewness, kurtosis, and the 
minimum value of the Euclidean distance of the SPM. 

It is also noteworthy that feature engineering approaches incorporating SPM 
(approaches 2 through 4) retain all original features to maximize accuracy. 
Conversely, some approaches lead to significant dimensionality reduction. For 
instance, in approach 7, only three features are selected out of 12, and in approach 
10, only six out of 33 are chosen, highlighting the substantial reduction in feature 
space. 

Furthermore, Table 3 summarizes the classification results, highlighting the 
quantitative performance metrics introduced in the previous section: computation 
time, storage requirements, and accuracy. 

Table 3. Summary of quantitative metrics of the classifiers 

Feature set (with 

selected 

features) 

Classifier Computation time Storage Accuracy 

(%) Training 

(s) 

Prediction (ms) No. 

features 

Size 

(KB) Feat. 

eng. 

Clas. Total 

1 DT 2.42 1.48 0.01 1.49 6 11 100 

SVM 4.99 0.11 1.59 261 99.3 

ANN 1.76 0.01 1.49 13 100 

2 DT 1.87 1.00 0.01 1.01 4 54 27.3 

SVM 2.81 0.12 1.12 208 28.7 

ANN 9.86 0.04 1.04 10 33.0 

3 DT 1.22 0.95 0.01 0.96 3 16 44.3 

SVM 54.31 0.13 1.08 301 47.3 

ANN 9.77 0.01 0.96 12 49.7 

4 DT 2.58 0.94 0.01 0.95 3 53 48.0 

SVM 1.90 0.19 1.13 359 50.7 

ANN 6.34 0.01 0.95 12 54.7 

5 DT 2.08 1.05 0.01 1.06 4 47 86.0 

SVM 5.22 0.11 1.16 241 90.3 

ANN 10.86 0.02 1.07 19 91.7 

6 DT 2.32 0.80 0.01 0.81 6 11 99.3 

SVM 3.65 0.05 0.85 223 100 

ANN 1.33 0.02 0.82 9 100 

7 DT 2.13 2.89 0.01 2.90 3 20 97.3 

SVM 4.98 0.08 2.97 213 100 

ANN 1.49 0.01 2.90 9 100 

8 DT 2.26 2.97 0.01 2.98 6 11 99.7 

SVM 5.40 0.07 3.04 247 99.0 
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ANN 3.01 0.01 2.98 9 99.3 

9 DT 2.36 3.16 0.01 3.17 6 11 99.3 

SVM 1.73 0.08 3.24 300 100 

ANN 3.10 0.01 3.17 11 98.0 

10 DT 2.36 3.15 0.01 3.16 6 11 100 

SVM 2.07 0.10 3.25 224 100 

ANN 1.03 0.01 3.16 11 100 

Source: own elaboration 

Computation time 

Table 3 outlines the median computation times from 100 training iterations per 
classifier, executed on a CPU with a six-core processor (2.20 GHz, 12 GB RAM). The 
data reveals significant differences in training and prediction times across various 
approaches. DT and ANN classifiers consistently exhibit low prediction times, 
making them highly advantageous for real-time applications. A key observation is 
that the prediction time is largely dictated by the duration of the feature 
engineering process. Approach 6 excels with the shortest feature engineering time 
of just 0.8 ms, positioning it as the most efficient option for time-sensitive tasks. 

Storage requirements 

The storage demands for each classifier, as detailed in Table 3, highlight the 
memory footprint associated with different approaches. For example, the DT and 
ANN models from approach 1 require just 11 KB, and 13 KB, respectively, while the 
SVM model for the same feature set demand 261 KB. This comparison underscores 
the storage efficiency of DT and ANN, which is especially important when deploying 
models on resource-constrained devices. In contrast, SVM models generally require 
more storage due to their higher complexity and parameter count. 

Accuracy 

Classifier accuracy was assessed using holdout validation, with 70% of the data 
allocated for training and 30% for testing. The accuracy metrics in Table 3 reveal 
that, except for SPM-based approaches (2-4), all classifiers achieve high accuracy 
rates. This evaluation is crucial for understanding the generalization capabilities of 
each model. Although SPM-based methods initially show reduced accuracy, the 
integration of statistical metrics for both real and imaginary components in 
approach 5 yields improved results, though it still falls short compared to other 
methods. Overall, DT, SVM, and ANN classifiers perform well in terms of accuracy, 
making them robust choices for this application. 

Interpretability 

Feature interpretability is crucial for gaining a better understanding of the voltage 
sag phenomenon, facilitating more effective applications of the analysis. Clear 
thresholds for features allow for a better understanding of the range of each sag 
category. In this regard, DT and SVM provide more defined thresholds, with DT being 
simpler to apply. Conversely, ANN models are more complex, and no easy 
interpretation is given to the internal process and decision boundaries. 

To illustrate this concept, Figure 5 presents classifiers (DT, SVM, and ANN) derived 
from feature set 7. This approach is selected due to its use of only three features, 
making the visualization of the decision space more intuitive, particularly for SVM. 

Figure 5(a) shows the DT, where thresholds are easily understood. For example, if 
the minimum fundamental magnitude of phase a (from STFT) is below 0.97, phase 
b is below 0.9, and phase c is below 0.89 (left side of the tree), it likely indicates a 
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voltage sag caused by a three-phase fault (abcG). The interpretation here is 
straightforward since reduced magnitudes across all three phases suggest a fault 
affecting all phases, typically a three-phase fault. Even with larger trees for higher-
dimensional spaces, the binary rule-based nature of DT makes thresholds and their 
physical interpretations clear. 

Figure 5(b) illustrates the SVM, where a decision boundary clearly separates voltage 
sags resulting from three-phase faults (abcG) and two-phase-to-ground faults 
involving phases a and b (abG). While a physical interpretation similar to DT is 
possible, it is worth noting that only a portion of the SVM is illustrated for better 
visualization. The full quadratic SVM is more complex, using several decision 
boundaries to categorize the ten types of sags. 

For the ANN, as shown in Figure 5(c), the interconnected layers of neurons reinforce 
its black-box nature. The model offers no meaningful insight into the physical 
interpretation of weights and neurons, underscoring its complexity and lack of 
interpretability. 

Figure 5. Visualization of (a) DT, (b) SVM, and (c) ANN 

(a) 

 

(c) 

 

(b) 

 

Source: own elaboration 

While interpretability is inherently qualitative and lacks a direct numerical score, it 
is essential to quantify it for inclusion in the AHP-based evaluation.  An overall 
interpretability score can be assigned to the classification approaches based on 
subjective criteria, including simplicity, transparency, and consistency. Each of 
these aspects is weighted equally. To calculate the overall interpretability score, 
individual scores for simplicity, transparency, and consistency are assigned to each 
approach on a scale from 0 to 1, and the average of these scores is computed. The 
results are summarized in Table 4. The following criteria are used to evaluate each 
aspect: 
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• Simplicity: This refers to how easily the model can be understood and 
applied. For DT, simplicity is measured by the depth of the tree or the 
number of rules, which makes them highly interpretable with a score of 1.0. 
SVM have moderate simplicity due to the complexity of kernels and the 
number of support vectors, scoring 0.4. ANN have low simplicity because of 
their complex structure with many layers and neurons, resulting in a score 
of 0.2. 

• Transparency: This measures how understandable the internal mechanics 
of the model are. DT are highly transparent as their decision-making 
process is clear and straightforward, scoring 1.0. SVM are moderately 
transparent; while the decision boundary can be understood, non-linear 
kernels add complexity, giving a score of 0.7. ANN are less transparent due 
to their complex architecture, resulting in a score of 0.4. 

• Consistency: This evaluates how well the model’s decisions align with 
human reasoning or domain knowledge. DT demonstrate good consistency 
by producing similar decisions for similar cases, scoring 0.8. SVM show 
moderate consistency, with decision boundaries that generally respect 
domain-specific criteria but can be less predictable, scoring 0.5. ANNs have 
lower consistency due to their complexity and variability, achieving a score 
of 0.3. 

Table 4. Interpretability scores for the AI algorithms for classification. 

Classifier Simplicity Transparency Consistency Total interpretability score 

DT 1.0 1.0 0.8 0.93 

SVM 0.4 0.7 0.5 0.53 

ANN 0.2 0.4 0.3 0.30 

Source: own elaboration 

Overall suitability for voltage sag classification 

The overall suitability of classifiers for fault-induced voltage sag classification was 
evaluated using the AHP, a well-established Multi-Criteria Decision Making (MCDM) 
approach. AHP enables a structured comparison of multiple criteria by weighing 
performance metrics according to their relative importance, as outlined in [50, 51]. 

In this study, the AHP was specifically tailored for a case where the classifiers are 
intended for real-time applications. Given this context, the selected performance 
metrics include prediction time, model size, interpretability, accuracy, number of 
features, and training time. It is essential to highlight that prediction time and 
training time are treated independently in this analysis due to their differing 
impacts on real-time performance. Prediction time is critical for real-time 
applications, where rapid decision-making is required, while training time is less 
critical once the model is deployed. Similarly, the number of features and model 
size are evaluated separately to reflect their individual contributions to the 
efficiency and feasibility of the classifiers. 

The weights assigned to each performance metric were determined through AHP 
by performing pairwise comparisons of relative importance, constructing a criteria 
matrix, and calculating eigenvector values, as prescribed by AHP and MCDM theory 
[50, 51]. The resulting weights are presented in Table 5. 
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Table 5. Weights assigned to performance metrics obtained through the AHP. 

Performance metric Weight 

Prediction time 0.3675 

Model size 0.2722 

Interpretability 0.1297 

Accuracy 0.1138 

Number of features 0.0606 

Training time 0.0562 

Source: own elaboration 

The weights in Table 5 prioritize prediction time as the most crucial factor, ensuring 
rapid responses to prevent equipment damage or interruptions. Model size is also 
important, especially for deployment on resource-constrained devices, where 
smaller models enhance processing efficiency. Interpretability is essential for 
understanding the decision-making process, particularly in industrial settings 
where validation and regulatory compliance are necessary. While accuracy is 
important, it is balanced against the need for speed and resource efficiency. The 
number of features and training time are less critical, focusing on model simplicity 
and minimizing training overhead. 

To apply the AHP using the weights in Table 5, it is crucial to normalize the 
performance metrics. Normalization ensures that the metrics, which may have 
different scales or units, are comparable, allowing for a fair evaluation across all 
criteria. According to MCDM theory, various approaches can be used for 
normalization [50]. In this study, metrics where smaller values are preferable (e.g., 
prediction time, model size, interpretability, number of features, and training time) 
are normalized using (1). Conversely, metrics where higher values are better (e.g., 
accuracy) are normalized using (2). 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 

𝑉𝑎𝑙𝑢𝑒
 (1) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 =
 𝑉𝑎𝑙𝑢𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛
 (2) 

Once normalized, the AHP-based methodology is applied to evaluate the 30 
classification approaches formulated for fault-induced voltage sag classification, 
encompassing three types of classifiers (DT, SVM, and ANN), each trained with 10 
distinct feature sets. The resulting scores are depicted in Figure 6, which provides 
a comparative visualization of the overall suitability of each approach.  
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Figure 6. AHP results for voltage sag classification approaches. 

 

Source: own elaboration 

Figure 6 shows that the approach employing DT with feature set 6, which leverages 
the DFT focusing on fundamental magnitude, phase angle, and THD, achieves the 
highest overall performance. This top-ranking score reflects an optimal balance 
across key metrics such as prediction time, model size, accuracy, and 
interpretability, making it particularly well-suited for real-time applications. 

The radar chart in Figure 7 offers a comparison of the performance of the DT, SVM, 
and ANN classifiers, trained with feature set 6, across key metrics, further 
supporting the findings of the AHP analysis. 

Figure 7. Radar chart of classifier performance metrics. 

 

Source: own elaboration 

Figure 7 shows that ANN excels in model size, offering the smallest memory 
footprint, making it ideal for resource-constrained devices. However, its lower 
interpretability is a significant drawback for real-time applications requiring 
transparency. DT stands out for its strong interpretability, rapid prediction times, 
and overall balance across metrics, confirming it as the best all-around choice for 
fault-induced voltage sag classification, especially where speed and clarity are 
crucial. SVM delivers competitive accuracy but is hindered by a larger model size 
and longer prediction times, reducing its efficiency and making it less optimal than 
DT for scenarios requiring quick responses and low computational overhead. 
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Conclusions 
In this study, various machine learning techniques, including DT, SVM, and ANN, 
were evaluated for their effectiveness in classifying fault-induced voltage sags. The 
research involved generating extensive synthetic signals through MATLAB/Simulink 
simulations, applying feature engineering techniques, and conducting a systematic 
comparison using the AHP to assess performance across multiple criteria such as 
accuracy, computation time, storage requirements, and interpretability. 

The findings demonstrate that DT are highly effective for fault-induced voltage sag 
classification, offering a combination of speed, accuracy, and interpretability that 
makes them ideal for real-time applications. Their straightforward decision-making 
process and low computational requirements make them particularly suitable for 
deployment in environments where both rapid response and resource efficiency 
are critical. 

SVM also deliver good accuracy, though they require significantly more 
computational and storage resources. Their interpretability, while moderate, could 
be a limitation in applications where transparency and ease of understanding are 
important. However, SVM’s robustness, particularly in handling complex 
classification tasks, suggests they may be better suited for scenarios where 
accuracy is paramount, and resource constraints are less critical. 

ANN, while providing balanced performance across various metrics, fall short in 
interpretability. The complexity of their internal processes makes them less 
suitable for applications where understanding and explaining the decision-making 
process is crucial. Nonetheless, ANN may be beneficial in situations where model 
size and computational efficiency are the primary concerns, especially in resource-
constrained environments. 

Finally, the choice of classification techniques should be guided by the specific 
requirements of the application, including the need for real-time processing, 
resource availability, and the importance of interpretability. Future research should 
focus on expanding the evaluation criteria to include additional quantitative and 
qualitative metrics, and on developing methods to enhance the interpretability of 
classification results through Explainable Artificial Intelligence (XAI) techniques. 
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