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Abstract 

 
Objective: This study aims to apply detection architecture as a strategy for identifying and classifying 
symptoms of hypertensive retinopathy (HR) in digital fundus images. 
Methodology: The proposed model is based on the CRISP-machine learning (ML) methodology, which is 
the most widely used method in ML projects, and consists of six stages. These stages are followed 
exhaustively; however, adaptations are made where necessary. 
Results: The findings from this study reveal that the proposed system can accurately detect symptoms 
of HR in a fundus image with 96% accuracy. 
Conclusions: Image classification and ML techniques are presented as viable alternatives to support the 
decision-making process required for detecting symptoms of this ocular complication. These methods 
are expected to benefit specialized physicians as well as patients with HR. 
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Abstract 

 
Objetivo: Aplicar una arquitectura de detección como estrategia para identificar y estadificar signos de 
retinopatía hipertensiva en imágenes digitales de fondo de ojo. 
Metodología: El modelo propuesto se fundamenta en la metodología CRISP-ML que es el método más 
utilizado en proyectos de aprendizaje automático y consta de seis etapas. Estas etapas se siguen de 
manera exhaustiva, pero se realizan adaptaciones donde sea necesario. 
Resultados: Los resultados obtenidos en este trabajo muestran que el sistema propuesto es capaz de 
detectar signos de retinopatía hipertensiva en una imagen de fondo  de  ojo  con  una  precisión  del  
96%.  
Conclusiones:  las  técnicas  de  clasificación  de  imágenes  y  aprendizaje  automático  se  presentan  
como  una  alternativa  para  el  apoyo  de  la  toma  de  decisiones  necesarias en la detección de signos 
de esta complicación ocular. Con esto se espera que beneficien tanto los médicos especialistas como los 
pacientes con retinopatía hipertensiva. 
 
Palabras clave: Retinopatía hipertensiva, aprendizaje automático, detección, precisión, YOLO 
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Introduction 
 
Cardiovascular disease is the foremost global cause of mortality. In Colombia, cardiac conditions alone 
contributed to 17.1% of documented male deaths and 18% of female deaths in 2022 [1]. Here, high blood 
pressure (HBP) emerges as the primary risk factor, capable of causing severe complications if not promptly 
treated [2]. The World Health Organization (WHO) [3] reported a global prevalence of 1.13 billion people with 
HBP, with the majority, almost two-thirds, residing in low- and middle-income countries. According to the 
Ministry of Health and Social Protection of Colombia (Minsalud) [4], ~4 out of 10 adults in the country grapple 
with HBP, with 60% of them being unaware of their condition. Moreover, these prevalence rates increase with 
age, with a higher incidence among females than males [5, 6, 7, 8]. Hypertensive retinopathy (HR) damages the 
retina due to the sudden surge in blood pressure, whether of primary or secondary origin, leading to 
diminished visual acuity and potential progression to blindness. Multiple studies have established a correlation 
between HR and elevated blood pressure levels. The World Health Organization estimates that ~1.3 billion 
people worldwide live with some form of visual impairment [9]. 
 
The diagnosis of HR involves a fundus examination that supplements the systemic evaluation of several 
patients. This examination can unveil vascular pathology markers in coronary and cerebral circulation, 
encompassing circulatory characteristics, the appearance of retinal capillaries, and microvascular changes in 
the retina. Consequently, a comprehensive assessment of the retinal vascular tree, optic nerve, and retina 
proves highly beneficial in predicting the risk of major cardiovascular diseases [10]. Detecting HR is a labor-
intensive undertaking in terms of time and financial resources. Unfortunately, this procedure is currently 
performed manually, with specialists using different equipment or devices to visualize the retina and identify 
symptoms of the disease, such as crossings between veins, exudates, hemorrhages, and drusen, which are 
sometimes challenging to discern in fundus images. In addition, the comparison of extensive medical data and 
images and the recognition of necessary patterns for identifying each disease may contribute to fatigue and 
errors among specialists [10]. Another challenge is the limited number of doctors specialized in this field; 
according to Minsalud, only 4.1% of physicians specialize in ophthalmology, and they are predominantly 
located in larger cities [11]. 
 
In addition to the methods usually used in medicine to diagnosis, there are computer-assisted diagnostic 
methods that offer reliability, reproducibility, and quantification of different variables, which facilitate clinical 
diagnosis [11]. Consequently, several studies related to HR have been documented in the literature, aiming to 
identify diverse symptoms indicating the presence of hypertension in patients. One of these studies features 
an automated HR detection system proposed by Sarmad Khitran [12] based on the retinal arteriovenous ratio 
(AVR). The system encompasses a method for vessel classification, distinguishing between arteries and veins 
using a feature vector and a hybrid classifier. For these purposes, two publicly available databases of digital 
fundus images, VICAVR and DRIVE, were employed. The technique proposed by Irshad [13] focuses on 
classifying vessels into arteries and veins using a binary vessel mask and the localization of the optic disc (OD) 
center to extract the region of interest around the OD, achieving an accuracy of 81.3%. The research 
conducted by Triwijoyo [14] centers on an early HR detection system. It utilizes the fundus image as input to a 
convolutional neural network to determine the presence of HR symptoms. Triwijoyo used DRIVE as the 
dataset, and an accuracy of 98.6% was attained. The research proposed by Arasy [15] introduces a system for 
HR detection through principal component analysis (PCA) and a backpropagation neural network. Retina 
images were sourced from the STARE database, demonstrating an accuracy of 86.36%. While these studies 
identify the arteriovenous ratio (AVR), they fail to consider other symptoms crucial for diagnosis, such as 
significant crossings and exudates. Moreover, they do not quantify the symptoms or their locations, which are 
essential for classifying complications as mild, moderate, or severe as well as for patient monitoring and 
prognosis. 
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This study discusses the implementation of algorithms based on machine learning (ML) techniques capable of 
identifying characteristics and symptoms present in patients with HR. When integrated into a computational 
tool, it has the potential to streamline the analysis time of a fundus examination in a clinical environment. 
 
Method and Procedures 
 
This project was developed using the CRISP-ML methodology, where the initial four stages aided in the 
detection of HR symptoms. To achieve this goal, an image dataset was created to identify the pathology’s 
specific symptoms. During the modeling stage, two phases were considered: training and testing. Ultimately, in 
the testing phase, the performance was assessed using a separate test dataset, ensuring that the data had not 
been utilized in the training process. 
 
Database Configuration 
 
The images used for symptom identification were sourced from commonly used public databases in research 
and projects associated with this pathology. 
 
E-ophta [16]. This dataset is divided into two categories: E-Ophta MA and E-Ophta EX. E-Ophta MA includes 
148 images featuring microaneurysms and small hemorrhages, along with 233 images showing no lesions. 
Further, E-Ophta EX comprises 47 fundus images with exudate segmentation and 35 images without any form 
of lesion, designated as normal images. 
 
Kaggle DR dataset [17]. This dataset is provided by EyePACS (n.d.) to contribute to the research and 
development of projects related to the detection and diagnosis of diabetic retinopathy. In total, it comprises 
88,702 images, wherein 35,126 are used for training tasks and 53,576 are used for testing. 
 
Retinopathy online challenge [18]. ROC contains 100 color fundus images, all of which display 
microaneurysms. These images are randomly distributed, with 50 images assigned for training and 50 images 
for testing. 
 
A total of 200 fundus images presenting microaneurysms and hemorrhages were collected, along with 150 
images featuring exudates and drusen. 
 
Data Preparation 
 
Labeling 
After selecting the images, graphical labeling is performed using a free and open-source tool. This tool, termed 
LabelImg [19], which was developed in Python, employs QT for its graphical interface and is crucial for 
recognizing the dataset’s importance in training the model. LabelImg is selected to utilize labels that help 
identify components within the data, aiding the model in dataset recognition. For each image, LabelImg 
generates a YOLO-formatted marked file, storing information in a .txt file. In this file, the first column indicates 
the class of the selected object. The second and third columns denote the central point in the x- and y-
directions of the bounding rectangle, and the fourth and fifth columns represent the width and height of the 
rectangle. 
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Data Augmentation [20] 
 
In this project, data augmentation was implemented through the open-source CLODSA package [21], designed 
for image transformations. The selection of this library was based on its adaptability to various requirements 
and its effectiveness in improving detection model accuracy. Transformations applied to the original images 
depicting hemorrhages and microaneurysms involved random horizontal and vertical flips, along with 90° 
rotations. This approach substantially increased the number of images available for training. Similar operations 
were conducted on the original images showcasing exudates and drusen. 
 
Modeling 
 
The model selected for this study was YOLO [22], an architecture used for object detection. In this approach, 
potential bounding boxes are initially generated in an image, followed by the classification of each of these 
boxes [23]. Subsequently, a postprocessing stage refines the bounding boxes, eliminates duplicate detections, 
and reclassifies the boxes based on other objects in the image. These systems are slow and challenging to 
optimize due to the separate training of each individual component. On the contrary, YOLO utilizes a single 
convolutional network that predicts multiple bounding boxes and class probabilities for those boxes 
simultaneously (Figure 1). It undergoes training on complete images, directly optimizing detection 
performance. This unified model provides several advantages over traditional object detection methods [23]: 
 
YOLO is exceptionally fast, with the neural network simply running on a new image to predict detections. YOLO 
achieves more than double the average precision of other real-time systems. 
 
YOLO works globally across the image. Unlike sliding window techniques and region proposal methods, YOLO 
considers the entire image during both training and testing, implicitly incorporating contextual information 
about classes and their appearance. 
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Figure 1. Illustration of how YOLO works 

 
Source: [23] 

 
File and model data configuration: All the configuration settings analyzed (Table 1) are based on a Tesla P100 
GPU with 16 GB available in Google Colab. 
 

Table 1. Parameters used for training the YOLO neural network model 

 

img Defines the size of the input image for training. It should be a multiple of 32 

batch Determines the size of the image batch 

max_batches 
Defines the number of training epochs or iterations. At a minimum, it must comply with (# of 
classes) × 2000 

Steps Defined from the max_batch, i.e., (80% of max_batches), (90% of max_batches) 

Filter 
The number of filters to be applied depends on the number of classes and is defined as filters = (# 
of classes + 5) × 3 

data Defines the path to the data and name file where the paths and classes are 

cfg: Specifies the configuration of the selected model 

Random 
This allows to save memory during training; if it is set to 1, the batch size will vary during training, 
slowing down the process, whereas if it is set to 0, a fixed input batch is used, reducing memory 
usage and speeding up training 

Source: Adapted from [23] 

 
Training 
 
In this study, we worked with two YOLO models: YOLOv3 and YOLOv4, both in their larger versions and smaller 
versions (YOLOv3_tiny and YOLOv4_tiny). Four experiments were conducted with these models by varying 
their configuration. In the Darknet-53 configuration file (cfg), the batch size was changed from 64 to 32, 
max_batches were set to 7,000, and the steps were set to 5,600 and 6,300. The model was trained for 7,000 
iterations with a batch size of 32. Learning rates were scheduled to decrease at steps 5,600 and 6,300. Next, 
the number of filters was determined based on the number of classes (Figure 2), which in this case were two 
since each model detects two symptoms. 
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Figure 2. Configurations of the first experiment with the small version of YOLO (YOLOv3_tiny) at a fixed resolution of 416 
× 416 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Prepared by the authors 

 
Assessment 
 
The model assessment relies on its performance, employing metrics, such as the confusion matrix, and derived 
indicators, such as specificity, sensitivity, area under the ROC curve, and precision. The calculated mean 
average precision (mAP) value for all classes is then determined to choose the best-performing model based 
on stability and consistency. 
 
 

Results 
 
Datasets 
 
For this study, 200 fundus images featuring microaneurysms and hemorrhages were gathered. In addition, 150 
images, including exudates and drusen, were sourced from the databases mentioned in Section 1.1. These 
fundus images were classified based on their dimensions and format, and they were organized to facilitate the 
detection of two symptoms associated with HR by each model. Specifically, the symptoms considered were 
hemorrhages and microaneurysms (Table 2) as well as exudates and drusen (Table 3). 
 

Table 2. Number of images from each resolution in the dataset used for hemorrhages and microaneurysms 
 

Dimension Format Total number of images 

1440 × 960 JPEG 80 

2912 × 2912 JPEG 30 

1504 × 1000 JPEG 20 

1500 × 1152 JPG 30 

2544 × 1696 JPG 40 

Source: Prepared by the authors 
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Table 3. Number of images from each resolution in the dataset used for exudates and drusen 
 

Dimension Format Total number of images 

2544 × 1696 JPEG 80 

776 × 582 JPEG 30 

1440 × 960 JPEG 40 

Source: Prepared by the authors 

 
Data Adequacy 
 
Labeling 
 
In this stage, the respective labeling of each image was conducted to obtain the delimiting rectangle and its 
respective .txt file in YOLO format (Figure 3). This same process was conducted for the model that detects 
exudates and drusen. 
 

Figure 3. Hemorrhage and microaneurysm labeling using LabelImg 
 

 
Source: Prepared by the authors 

 

 
Data Augmentation 
 
Data augmentation was used to improve the precision of the models in identifying symptoms present in a 
fundus image in HR. This involved considerably increasing the number of training images by transforming the 
original images (Figure 4), resulting in a total data augmentation of 708 images for training. The same process 
was applied to the 150 original images displaying symptoms of exudates and drusen, generating a total of 800 
images for training (Table 4). 
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Figure 4. CLODSA application: (a) vertical flip transformation; (b) horizontal flip transformation; (c) vertical and 
horizontal flip transformation; (d) 90° rotation transformation 

 

 
Source: Prepared by the authors 

 

 
Table 4. Number of images augmented for training 

 

Model Images Data augmentation 

Symptoms of hemorrhages and 
microaneurysms 

200 708 

Symptoms of exudates and 
drusen 

150 800 

Source: Prepared by the authors 

 
Modeling 
 
For this stage, four experiments were conducted based on the YOLOv3, YOLOv3_tiny, YOLOv4, and 
YOLOv4_tiny architectures. Based on the first experiment, a mAP of 49.9% was achieved over 7,000 iterations 
with a loss of 1.8 (Figure 5). 
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Figure 5. Results of mAP over 7000 iterations for the first experiment using the yolov3_tiny version of YOLO at a fixed 
resolution of 416 × 416 

 

 
Source: Prepared by the authors 

 
Based on the second experiment, a multiple resolution setup was used. In this case, Darknet [23] was used to 
obtain a random parameter. In the configuration files of the YOLOv3 small model, the default value of random 
was 0, indicating that no random resolution (or multiple resolution) was used during training. In this 
experiment, that value was changed to introduce random resolution. The remaining configurations and 
parameters remained constant (Figure 6). 
 

Figure 6. Configurations for the second experiment using the yolov3_tiny version of YOLO at several resolutions 
 

 
Source: Prepared by the authors 
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In the second experiment, training demonstrated an mAP of 48.1% and loss of 3.0 over 7,000 iterations. This is 
considerably higher than that observed in the first experiment with fixed-resolution training. This outcome 
highlights that training on smaller images makes the training data more challenging. Nevertheless, the model 
encountered numerous diverse scenarios, leading to an mAP that closely approached that observed in the first 
experiment (Figure 7). 
 

Figure 7. Results of mAP over 7000 iterations for the second experiment using the YOLOv3_tiny version of YOLO at 
several resolutions 

 

 
Source: Prepared by the authors 

 
In the third experiment, we used the configuration used in the second experiment but transitioned to the 
larger version of YOLOv3. The width and height were adjusted to 608, resulting in a resolution of 608 × 608. 
The batch and subdivision were both set to 32, with max_batches at 7,000 and steps at 5,600 and 6,300. These 
parameters remained consistent with those used in training the smaller models (Figure 8). 
 

Figure 8. Configurations for the third experiment using the large version of YOLOv3 at several resolutions 
 

 
Source: Prepared by the authors 



Revista Investigación e Innovación en Ingenierías, vol. 11, no.1, pp. 104–124, 2023, https:doi.org/10.17081/invinno.11.1.6364 

114 Christian Delgado Molina, Leonardo Africany Villamil, Jairo Vásquez López, Rubiel Vargas Cañas 
 

 

 
 
In the third experiment, training demonstrated an mAP of 53.58% over 7,000 iterations at the end of the 
training, with a loss of 3.0, which is similar to that of the second experiment, which is still higher than that 
observed in the first experiment with fixed-resolution training. This observation was also accepted because 
training the data becomes challenging when training on smaller images. Moreover, the model encountered 
several diverse scenarios, achieving a better mAP than the first and second experiments. Furthermore, 
considering that the large YOLOv3 version has 53 layers while the small YOLOv3_tiny version only uses 13 of 
these layers, it is expected that the mAP result would be much better (Figure 9). 
 

Figure 9. Results of mAP over 7000 iterations for the third experiment using the large version of Yolov3 at several 
resolutions 

 

 
Source: Prepared by the authors 

 
In the fourth experiment, we reverted to a fixed resolution (Figure 10) and the other parameters remained 
constant. 
 

Figure 10. Configurations for the fourth experiment using the large version of Yolov3 at a fixed resolution of 608 x 608 
 

 
Source: Prepared by the authors 
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In the fourth experiment, training demonstrated an mAP of 67.08% achieved over 7,000 iterations at the end 
of the training, with a loss of 2.0. This performance is notably superior to that of the second and third 
experiments. The achieved mAP surpasses that of the first, second, and third experiments, suggesting that 
extending iterations with this configuration could yield excellent results (Figure 11). 
 

Figure 11. Results of mAP over 7000 iterations for the fourth experiment using the YOLOv3 version of YOLO at a fixed 
resolution of 608 × 608. 

 

 
Source: Prepared by the authors 

 
The comparison of the results obtained using different versions of YOLOv3 is provided in Table 5 and Figure 12. 
 

Table 5. Results of experiments conducted using different versions of YOLOv3 
 

YOLO version 
Yolov3_tiny at a fixed 

resolution of 416 × 416 
Random = 0 

Yolov3_tiny at several 
resolutions of 416 × 416 

Random = 1 

Yolov3 at several 
resolutions of 608 × 608 

Random = 1 

Yolov3 at a fixed 
resolution of 608 × 608 

Random = 0 

mAP% 49.4 48.1 53.58 68.08 

Source: Prepared by the authors 

 
 



Revista Investigación e Innovación en Ingenierías, vol. 11, no.1, pp. 104–124, 2023, https:doi.org/10.17081/invinno.11.1.6364 

116 Christian Delgado Molina, Leonardo Africany Villamil, Jairo Vásquez López, Rubiel Vargas Cañas 
 

 

 
 

Figure 12. Results of experiments conducted using different versions of YOLOv3 
 

 
Source: Prepared by the authors 

 
Using the YOLOv4 architecture, which is the updated version of YOLOv3, the same experiments were 
conducted to observe how much the mAP improves compared to YOLOv3 (Table 6 and Figure 13). 

 
Table 6. Results of experiments conducted using different versions of YOLOv4 

 

YOLO version 
Yolov4_tiny at a fixed 

resolution of 416 × 416 
Random = 0 

Yolov4_tiny at several 
resolutions of 416 × 416 

Random = 1 

Yolov4 at several 
resolutions of 608 × 608 

Random = 1 

Yolov4 at a fixed 
resolution of 608 × 608 

Random = 0 

mAP% 40.02 41.50 65.32 69.34 

Source: Prepared by the authors 

 
Figure 13. Results of experiments conducted using different versions of YOLOv4 

 

 
Source: Prepared by the authors 

 



Revista Investigación e Innovación en Ingenierías, vol. 11, no.1, pp. 104–124, 2023, https:doi.org/10.17081/invinno.11.1.6364 

117 Detecting hypertensive retinopathy symptoms in digital fundus images using machine learning algorithms 
 

 

 
 
These experiments allow us to select the best-performing model (a model that is more stable and consistent), 
YOLOv4 [29], before proceeding with the next phases. 
 
Training 
 
Once the best-performing version is selected, the dataset is then divided into training, validation, and testing 
for both scenarios (Table 7). 
 
 

Table 7. Training, validation, and testing distribution 
 

Model Training Validation Testing 

Symptoms of hemorrhages and 
microaneurysms 

 
602 

 
71 

 
35 

Symptoms of exudates and 
drusen 

680 80 40 

Source: Prepared by the authors 

 
 
Later, YOLOv4 is configured based on to the experiment through which the best results were achieved. The 
tools used for training and subsequent result visualization can be seen in Table 8. 
 

Table 8. Tools used for training 
 

 
Google Colab 

 
LABELIMAGE 

 
YOLO 

 
Python 

Enables execution and 
programming in Python without 

configuration 

For the distribution of image 
labels 

It is an object detection 
algorithm 

Programming language 
used in the project 

Source: Prepared by the authors 

 
 
The transfer learning technique was used in this project. Transfer learning is an ML method where a model 
designed for one task is reused as the starting point for another task. In this particular case, this technique was 
employed to train the model starting from the yolov4.conv.137 model, which is capable of predicting 80 
classes in an image or video. The models were trained for different iterations, achieving an average accuracy of 
80% and 88.45% (Table 9). 
 

Table 9. Model training results obtained through different iterations 
 

Model Iterations mAP % 

Hemorrhages and microaneurysms 14,700 80% 

Exudates and drusen 20,000 88.49% 

Source: Prepared by the authors 

 
 
Detection Using the Trained Model 
 
Using the trained model, tests were conducted on a new dataset, maintaining the configuration and weights 
(Figures 14 and 15). 
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Figure 14. Detection of hemorrhages and microaneurysms 
 

 
Source: Prepared by the authors 

 
Figure 15. Detection of exudates and drusen 

 

 
Source: Prepared by the authors 

 
 
According to the number of symptoms present in the fundus image, a category of HR was associated: mild, 
moderate, or severe, referring to the grading of the Spanish Society of Retina and Vitreous (SERV) and the 
Spanish Society of Ophthalmology (SEO) (Table 10 and Figures 16 and 17). 
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Table 10. Stages of hypertensive retinopathy according to the number of symptoms detected 
 

Equivalence International classification SERV and SEO classification 

Only microaneurysms or only 
exudates 

Mild retinopathy Less than 5 or equal to 5 

Microaneurysms, hemorrhages, 
and exudates 

Moderate retinopathy Less than 20 and greater than 5 

Microaneurysms, hemorrhages, 
exudates, and drusen 

Severe retinopathy Greater than 20 or equal to 20 

Source: Prepared by the authors 

 
Figure 16. Hypertensive retinopathy (HR) staging using the proposed algorithm in Python 

 

 
Source: Prepared by the authors 

 
Figure 17. HR staging using the proposed algorithm in Python 

 

 
Source: Prepared by the authors 
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Assessment 
 
Two scenarios were considered during the assessment. When assessing the different models using metrics 
associated with object detection using an unseen dataset for scenario one, we utilized 525 images to calculate 
the confusion matrix (Figure 18) and derived evaluation metrics (Table 11), along with the ROC curve (Figure 
19). 
 

Figure 18. Model 1 confusion matrix 
 

 
Source: Prepared by the authors 

 
Table 11. Model 1 assessment metrics 

 

 Accuracy Recall F1 score 

Drusen 0.94 1.00 0.97 

Exudates 1.00 0.94 0.97 

Source: Prepared by the authors 

 
Figure 19. ROC curve of Model 1 
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Source: Prepared by the authors 
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In scenario two, hemorrhages and microaneurysms were detected by calculating the confusion matrix (Figure 
20), assessment metrics (Table 12), and ROC curve (Figure 21). 
 

Figure 20. Model 2 confusion matrix 
 

 
Source: Prepared by the authors 

 
Table 12. Model 2 assessment metrics 

 

 Accuracy Recall F1-Score 

Hemorrhages 0,91 0,93 0,92 

Microaneurysms 0,93 0,92 0,92 

Source: Prepared by the authors 

 
Figure 21. ROC curve of Model 2 

 

 
Source: Prepared by the authors 
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Discussion 
 
Following the validation of both detection models and the assessment of various metrics across training, 
validation, and testing datasets, it becomes evident that the YOLOv4 architecture, particularly in the fixed-
resolution configuration highlighted in the fourth experiment, outperforms the YOLOv3 architecture. To 
measure the effectiveness of both models, the confusion matrix was utilized, revealing that for model one, 
which detects drusen and exudates, there were 67 true negatives and 68 true positives. In particular, out of 
the 135 cases (diagonal) from a total of 139 images taken from the testing dataset, the category of each class 
was accurately predicted. Similarly, for model two, which was designed for detecting hemorrhages and 
microaneurysms, it yielded 65 true negatives and 63 true positives. This indicates that out of the 128 cases 
(diagonal) from a total of 139 during testing, the category of each class was accurately predicted. 
 
Upon evaluating the results using the confusion matrix, precision, sensitivity, and F1-score metrics were 
computed. Model one demonstrated high recall for drusen with a value of 1.0, and for exudates, it achieved 
0.94 in recall, with precision reaching 0.94 and 1.0 for drusen and exudates, respectively. These figures suggest 
that model one effectively detects the classes, and the F1 score of 97% further affirms its robust performance. 
On the contrary, model two exhibited high precision and recall, indicating its effective handling of class 
detection in the majority of instances. It achieved an F1 score of 92%, reinforcing its overall good performance. 
Furthermore, when analyzing the AUC results on the ROC curve, model one displayed an AUC of 0.99 for 
exudates and 0.96 for drusen and model two showcased an AUC of 0.96 for hemorrhages and 0.94 for 
microaneurysms. These outcomes establish that these two models attained the best results, enabling efficient 
detection of the symptoms for which they were trained. This underscores the robustness of the models, 
bolstered by a substantial number of images and a pretrained model. 
 
The presentation of the data collected aligns with the proposed objectives, showcasing clear and precise 
results in accordance with the established method. The relevant tables and figures required for presenting the 
results are included in this section. 
 

Conclusions 
 
The results obtained in this study provide an encouraging outlook for detecting symptoms of HR. Moreover, 
the implemented ML algorithm demonstrates optimal results, which can serve as supportive information for 
specialists in decision-making regarding the ocular pathology discussed in this study. The ML algorithm, 
employed in conjunction with the proposed method for processing fundus images, successfully detected four 
symptoms present in HR: hemorrhages, microaneurysms, exudates, and drusen, achieving AUC values of 0.99 
and 0.96. This positions it as a viable alternative for aiding specialists in making diagnoses. 
 
As indicated by the study findings, the algorithm, based on the quantity of detections, can categorize the 
ocular pathology as mild, moderate, or severe. The data collection phase is crucial, and emphasis should be 
placed on the accurate gathering of images and their respective annotations. In addition, emphasis on image 
preprocessing is essential for obtaining good results. The phases of data understanding and data preparation 
performed in this study, including feature extraction, were successful, yielding positive outcomes in the 
evaluation of HR symptom detection [24]. 
 
Two iterations of the YOLO detection algorithm, YOLOv3 and YOLOv4, were implemented with distinct 
configurations. The outcomes favored the adoption of the YOLOv4 architecture for this study, showcasing 
elevated values across all metrics, including sensitivity, accuracy, precision, F1 score, and AUC. This study paves 
the way for further exploration. 
 

• The model can be deployed on a web server, enabling interaction with users through a platform. This 
is expected to have a notable impact on supporting specialists in diagnosis, thereby increasing the 
likelihood of timely diagnoses for patients with HR. 

• Inclusion of images from patients in a clinical setting can help enrich the database for subsequent 
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algorithm training. 

• Execution of training on a high-performance GPU can be performed to eliminate resource limitations. 

• Investigation of training with more recent YOLO models, such as YOLOv5 or YOLOv6, can be 
conducted to improve the mAP value. 
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