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Abstract 

Objetive: Teach the operation of the Summit platform and the Powerball robot manipulator. Simultaneous 
Localization and Mapping (SLAM) is a quite common and interesting problem in mobile robotics. It is the 
basis of safe autonomous navigation of mobile robots and the entrance to new combined applications 
with a manipulator for instance. Methodology: In order to find a solution to the SLAM problem, the ROS 
middleware and the MRPT were selected. Autonomous navigation was tested using two methods, the 
MRPT navigation ROS package, which is a reactive navigation method based on Trajectory Parameter 
Space (TP-Space) transformations, and the ROS navigation stack, a standard for differential drive and 
holonomic wheeled robots.  Results: To validate the advantages and disadvantages of both approaches, a 
mobile robot with strong kinematic constraints (Ackermann-steering-type) known as Summit was used. 
As an additional work, an application using the mobile robot Summit and a robotic manipulator 
(Powerball) was carried out, with the intention of picking and placing objects of the mobile robot, a widely 
spread application among service robotics, especially, in the area of industrial logistics. Conclusions: 
Finally, it is concluded that with the tests carried out with the robot, it was possible to demonstrate 
autonomous navigation, using the two mentioned methods. 

Keywords: SLAM, ROS, MRPT, TP-Space, Robotic, Artificial intelligence. 

Resumen 
Objetivo: Enseñar el funcionamiento de la plataforma Summit y del robot manipulador Powerball. La 
localización y el mapeo simultáneos (SLAM) es un problema bastante común e interesante en la robótica 
móvil. Es la base de la navegación autónoma segura de robots móviles y la entrada a nuevas aplicaciones 
combinadas, como por ejemplo un manipulador Metodología: con el fin de encontrar una solución al 
problema de SLAM, se seleccionaros los middlewares ROS y MRPT. La navegación autónoma se probó 
utilizando dos métodos, a saber: el paquete ROS de navegación MRPT que es un procedimiento de 
navegación reactivo basado en las transformaciones del espacio de parámetros de trayectoria (TP-Space), 
y la pila de navegación ROS, un estándar para accionamiento diferencial y robots con ruedas holonómicas. 
Resultados: Para validar las ventajas y desventajas de ambos enfoques, se utilizó un robot móvil con 
fuertes restricciones cinemáticas (de tipo dirección Ackermann) conocidas como Summit. Como trabajo 
adicional se realizó una aplicación utilizando el robot móvil Summit y un manipulador robótico 
(Powerball), con la intención de recoger y colocar objetos desde el robot móvil hacia otros espacios, 
especialmente, en el área de logística industrial. Conclusiones: finalmente se concluye que con las pruebas 
realizadas con el robot se logró demostrar la navegación autónoma, utilizando los dos métodos 
mencionados. 

Palabras Claves: SLAM, ROS, MRPT, Espacio-TP, Robótica, Inteligencia artificial. 
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Introduction  
The applications of robotics have generally focused on the industrial areas, mainly 
mass production. These machines perform repetitive, tedious, and dangerous tasks 
for humans [1]. Since the last decade, the industrial robots stopped being of 
exclusive employment inside the production plants, focusing their applications in 
domestic areas, entering in a new and beneficial field known as service robotics [2]. 
The concept of service robot, according to the International Organization for 
Standardization (ISO 8373), can be defined as a robot that performs useful tasks for 
humans or equipment excluding industrial automation applications. However, it is 
worth mentioning the fact that those robots tend to operate partially or completely 
autonomously and the tendency is to reduce human intervention to the minimum. 
A simple task that any service robot must perform is to navigate in most of the 
cases through unstructured (unknown) environments; therefore, maps are not 
available, and the robot must build one on its own. The effectiveness and efficiency 
of navigation depends on having a map without large errors. However, this process 
is only one of the challenges any service robot must face in order to achieve a 
decent autonomous navigation. 
 
Autonomous navigation is one of the most important objectives in mobile robotics 
[3]. It has three fundamental objectives: (1) autonomous exploration of known or 
unknown environments, (2) mapping, and (3) localization. In addition, the 
preparation of maps or models of the environment is a fundamental task in mobile 
and service robotics. Service robots can implement two types of navigation: (1) 
Navigation based on maps and (2) navigation without models (without maps). The 
map-based navigation requires a priory representation of the environment in order 
to plan trajectories that allow the robot to go from one point to another. However, 
it is not always possible to have a map, when the robot must carry out tasks in an 
unknown environment, then it must perform an exploration of the place in which 
is located, with the purpose of building a model or map of the environment. This 
work becomes complex because it is necessary for the robot to estimate its location 
on a map that is hardly in the process of being built. It means that the robot must 
solve simultaneously the problem of mapping and localization, both highly 
interrelated. This problem is known as Simultaneous Localization and Mapping 
(SLAM) [4]. The main objective of the present project is to implement and validate 
different algorithms for the autonomous navigation and mapping of indoor 
environments in a service robot, including solving the SLAM problem. The 
algorithms shall be implemented in an Ackermann-steering-type mobile robot 
known as Summit. In [5] an affordable solution for navigation and localization to 
operate in indoor environments, involving ROS, the TurtleBot2 robot, a Kinect 
sensor, a laptop and a pre-built map of an unknown environment is presented. In 
[6] a differential drive non-holonomic robot equipped with various onboard 
sensors (ultrasonic, Kinect, encoder) was developed and described how a ROS 
based control system and the gmapping package were used to achieve localization, 
autonomous navigation and mapping in an office like environment. [7] described a 
ROS-based control system applied to the Pioneer 3-DX robot used for the mapping, 
localization and autonomous navigation. [8] implemented and evaluated different 
methods of autonomous navigation: Pure Pursuit (which ended up discarded since 
the route followed by the robot was determined by the user while the others, the 
path was calculated by the robot itself), the ROS navigation stack and MRPT [9] pure 
reactive navigation. 
 
What remains of this article is organized as follows: in section two the materials 
and methods used for the mapping, autonomous navigation and the pick & place 
application are presented. The algorithms used for mapping and autonomous 
navigation are discussed in section three. In section four, an application that 
combines a mobile platform (Summit) and a robot manipulator (Powerball) is 
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explained. Results and discussion are presented in section five. Finally, the 
conclusions and the bibliography are shown. 
 
Methodology 
Never as before, robotic systems have had to perform the kind of tasks that are 
currently required [10, 11]. In this research, the approach has been to implement a 
solution for mapping and autonomous navigation on a service robot. Furthermore, 
a pick and place application combining a mobile robot and a robotic manipulator 
[12] suited for logistics or service robotics was carried out: 
 
Robot Operating System (ROS). Is an open-source robotics middleware. ROS 
provides a distributed programming environment, for both, real and simulated 
robots, as well as hardware abstraction, low-level control, message-passing 
between processes, software package management and tools and libraries for 
obtaining, building, writing, and running code across multiple computers. ROS has 
witnessed a huge community with increasing number of users and developers from 
academia and industry, as well as hobbyists. Nowadays, ROS has become the de-
facto standard for robotics research [13]. 
 
Mobile Robot Programming Toolkit (MRPT). It is an open-source C++ library which 
provides developers with portable and well-tested applications covering data 
structures and algorithms employed in common robotics research areas [14]. 
 
Robot Summit. It is an Ackermann-steering-type mobile robot with a 4x4 traction 
system. It has an embedded PC (Intel DN2800MT, 4GB of RAM and a 2.5 SATA HDD). 
The robot was modified to be able to use the Hokuyo UST-20LX and the Asus Xtion 
pro live as the main data acquisition sensors [15]. 
 
Schunk LWA4P (Powerball). It is a lightweight robot arm, especially suited for mobile 
applications due to its internal controllers. The low current input makes it possible 
to operate the lightweight arm either via a power supply or battery. The arm is 
controlled via CAN bus interface with CANopen protocol. It is essentially composed 
of three double-axis rotary modules in different sizes and a coupling flange for an 
end effector/gripper or a sensor [16]. 
 
Workstation. Lenovo Yoga 510 series with Intel Core i3-6100U CPU @ 2.30GHz x 4 
processor, 7.7 GB of RAM and 114.5 GB of HDD. 
 
Mapping & autonomous navigation algorithms 
 
Mapping. In order to set autonomous navigation, a map shall be created [17], in this 
particular case, we used the MRPT. It should be noted the type of format it uses, 
which is known as Rawlog format. It stores the datasets and are the input of many 
MRPT applications for off-line processing. Since the use of MRPTROS is fundamental 
regarding this project, therefore, to obtain a map that works without complications, 
data will be acquired using rosbags and then transformed to MRPT format. It should 
be mentioned that the gmapping package is also a well-suited option. 
 
MRPT reactive navigation. The MRPT navigation is a pure reactive navigation method 
based on Trajectory Parameterized Space (TP-Space) (See Figure 1) and 
Parameterized Trajectory Generator (PTGs). It is not map-based unlike ROS 
navigation. It means, the system generates a real-time “inner” obstacle-map and 
traces an optimal path based on the free-space [18]. 
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- Trajectory parameterized space. TP-Space is defined as a two-dimensional space 
where each point corresponds to a robot pose on C-Space sampling surface. The 
components of this space are an angular component α and a distance d [19]. 
 
- Parameterized trajectory generator. The MRPT reactive navigation well-
performance lies in the implementation of a set of path models to measure the 
distance to obstacles known as Parameterized Trajectory Generator (PTGs). They 
are a mapping of TP-Space points (α, d) into C-Space poses ((x, y), θ) so the straight 
path from origin becomes compatible with C-Space. 
 
 
Figure 1. A complete reactive navigation system based on TP-Space involves a variety of PTGs 
that simultaneously translate obstacles and the target location into the TP-Space. A 
holonomic reactive navigation method selects a desired motion in TP-Space. The most 
advantageous PTG is selected and translates the holonomic motion into a non-holonomic 
one, generating the velocity commands for the real robot. 
 

 
Source: [19]. 
 
RPT reactive navigation. The ROS Navigation stack (See Figure 2) contains two 
different planners. The global_planner which only calculates the shortest path from 
the robot estimated starting point on the map to its destination [20], not taking into 
consideration unexplored obstacles, and the local_planner which reacts to the 
local environment and those uncharted obstacles, replanning the trajectory if 
needed. This method is mainly meant for differential drive and holonomic wheeled 
robots; therefore, it does not care about the Ackermann steering of the mobile 
robot and its minimum turning radius. In order to fix it, the teb_local_planner 
package tries to overcome this limitation. This one shall run as the local planner, 
and also will compute the velocity commands based on its path. It requires a lot of 
information as input, which ultimate affects the result and the performance of the 
calculation. 
 
Figure 2. ROS Navigation stack 

 
Source: Own elaboration 
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Localization. In order to accomplish a well performed navigation, the autonomous 
driving car needs to get localized within the map correctly. From the start until the 
very end, the robots odometry is calculated based on velocity commands such as 
the speed and the steering angle, however, since the robots initial position begins 
on an estimated point, its odometry is not exact at all. Therefore, a localization 
algorithm is required to get a more precise position of the robot within map. ROS 
navigation uses the Adaptive Monte Carlo Localization (AMCL) [21], which is an 
algorithm that uses a particle-filter to track the pose of a robot against a known 
(laser-based) map. The MRPT reactive navigation uses the MRPT localization 
package, which is a similar interface to AMCL, however, its advantage is that it 
supports different particle-filter algorithms. 
 
Mobile platform Summit & robot manipulator Powerball 
The Summit robot was controlled using a joystick in order to move it around to 
some specific areas (See Figure 3) due to the limited space in which the 
autonomous navigation was not very accurate, at the same time its localization was 
determined with the MRPT localization package. Once the Summit robot reached 
one of the areas, a motion planning (MoveIt) run, trying to pose the Powerball end 
effector above an additional fixed link (to gripper link) which was added 15 cm 
above the top of the Summit URDF model, its purpose was to act as a reference for 
the Powerball end-effector. It means, that was the position the end-effector had to 
reach in order to start the pick and place actions. 
 
The end-effector of the Powerball robot was not used to avoid possible collisions 
with the Summit or the surroundings, a black sponge-like material with similar 
dimensions was used instead. It should be noted that is fully functional within the 
simulation, also the end-effector was added to the motion planner (MoveIt) in order 
to recreate a more rigorous movement trajectory. 
 
Figure 3. Powerball-Summit Work-Area 

 
Source: Own elaboration 
 
MoveIt! It is a high-level open-source package originally written thoroughly in C++ 
and later optimized for real-time performance. Earned its place as the most 
popular motion planning platform mainly due to the fact that its setup assistant 
GUI allowed a large community of non-experts and robotics hobbyists to access the 
many capabilities of the framework such as, motion planning, inverse kinematics, 
3D perception, collision checking, into a variety of robots or even to test their own, 
which ultimately lead into the growth, contribution to the software’s development 
and maintenance [22]. The core and integrator of MoveIt! high-level system is the 
ROS node move_group (See Figure 4) which in brief, it allows the user to interact 
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with ROS actions and services and command the robot using one of the following 
methods (C++ / Python API, or GUI plugin to Rviz). This node gathers the information 
regarding the robot and its surroundings (JointState, TF, Point Cloud) through ROS 
topics [23]. The robot description (kinematics, joint limits) included in the URDF and 
SRDF files, and obtained through the ROS param server. Noteworthy, the 
configuration files are automatically generated by MoveIt!’s assistant and stored 
inside the resulting ROS package. 
 
Motion planning. Motion planning is “the technique to find an optimum path that 
moves the robot gradually from the start pose to the goal pose, while never 
touching any obstacles in the world and without colliding with the robot links” [24]. 
In order to guarantee the extensibility within MoveIt! components and impulsing 
the framework to become successful, its plugin-based architecture was a game-
changing which allowed the software to be re-usable and provided the tools to 
create custom solutions [22]. 
 
Figure 4. MoveIt architecture diagram 
 

 
Source: Own elaboration 
 
This takes us back to the core node move_group, which through a couple of key 
components (ROS messaging system and the lightweight plugin interface [22]) allow 
the user to run the default planner OMPL (Open Motion Planning Library) [25] or 
any other. To start the motion planning, it all begins by using the ROS 
actions/services to send a request to the motion planner. That call specifies the 
planning requirements (i.e. to modify the current position of the actuator and/or 
end-effector) and, through ROS topics the node comprehends the robot’s global 
pose and the behavior of each joint, taking into consideration that at the same time 
a previously defined collision check is making sure the inbuilt kinematic (position, 
orientation, visibility) and user-specified constraints are under control. Finally, the 
result trajectory will be returned by the node complying with the default and 
modified constraints, as well as using the specified joint velocities [26]. 
 
Kinematics. The setup assistant uses by definition the KDL numerical jacobian-
based solver, however, as It has already been established, due to MoveIt! highly 
relies on the use of plugin infrastructure versatility, it permits the user to 
implement its own inverse kinematic (IK) solver by using the package IKFast which 
generates the C++ files for later use [27]. It should be noted that the IKFast plugin 
generator tool does not work with manipulators that poses more than 7 DOF [26].  
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Collision checking. It deeply relies on the FCL library [28] Despite being a costly 
computational operation, it is mostly transparent to the user; fortunately, there are 
some strategies that the user can implement in order to reduce the complexity. 
During MoveIt! setup assistant an automatic self-collision matrix is created [22], 
depending on the complexity of the manipulator, the resulting matrix can turn out 
very decent, though, once again, the user can modify it in order to disable or enable 
collision checking between links or the environment. 
 

Results  
The main results obtained during the research are described below. 
Mapping. In order to generate the maps, a dataset containing the odometry, laser 
measurements, tf, etc., was created completing the circuit in Figure 5. All obstacles 
are presented as black pixels, and free-spaces are the light gray areas, where the 
Summit is able to go. Glass doors are not detected as obstacles by the laser. 
Figure 5. Circuit covered by the Summit robot to generate a map 

 
Source: Own elaboration 
 
Autonomous navigation. Countless experiments of exploration of the workplace 
with remote teleoperation were conducted in order to obtain the necessary 
datasets to generate the best map to set the autonomous navigation with the 
methods described in chapter three. The objective of the autonomous navigation 
was to reveal the advantages and disadvantages offered by each one of the 
methods, taking into consideration the rectangular shape and Ackerman 
configuration of the robot. 
 
Figure 6. SLAM maps of (a) lab 1.10 CITE IV and (b) CITE IV floor 1 

 
(a) 

 

 
 

(b) 

Source: Own elaboration 
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The tests were performed in the CITE IV building of Universidad de Almería. In the 
area that corresponds to Figure 6a, the robot had to clear one lap, however, during 
the second try with MRPT, the robot was able to complete two laps, not being the 
case with ROS navigation. In the area that corresponds to figure 6b the robot had 
to go to the end of the corridor and returned. In both cases, the linear and angular 
speeds were set to 0.5 m/s and 0.6 rad/s respectively, in order to guarantee fair 
conditions. The sensorial system is based in a low-cost LIDAR, a depth sensor and 
encoders. A representation of the maps is shown in figure 6. Among the many 
criteria to compare both methods of navigation (computational expenses, safest 
path), the execution time was selected, that is, the amount of time the Summit 
robot needed to clear the path. Results are summarized in Table 1. 
 
Table 1. Autonomous navigation results 

MRPT navigation ROS navigation 

Lab 1.10 Corridor Lab 1.10 Corridor 

70 s 303 s 598 s 973 s 

80 s (Lap 1) – 434 s – 

70 s (Lap 2) – 628 s – 

Source: Own elaboration 
 
In both navigation packages a localization system based on an adaptive particle 
filter [29, 30] has been used. The ROS navigation included the AMCL package, 
whereas the MRPT reactive navigation used the mrpt_localization_package, which 
is a similar interface to AMCL but supporting different particle filter algorithms and 
sensors. In both cases, the estimated robot position in the map is shown as a cloud-
point of red arrows, as displayed in Figure 7. 
 
Figure 7. Local (green line) and Global (blue line) paths generated by the Local and Global 
planners of ROS navigation 
 

 
Source: Own elaboration 
 
A Powerball & Summit. As mentioned in section four, the Summit robot was 
controlled with a joystick due to the autonomous navigation ineffectiveness in the 
small work-area; on the other hand, the Powerball robot was working 
autonomously with the help of the motion planner MoveIt. 
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Figure 8. Powerball - Summit ROS TF 

 
Source: Own elaboration 
 
Once the Summit robot arrived to a specific area, the Powerball tried to pose its 
end-effector above the additional fixed link (to gripper link) added in the Summit’s 
URDF model. All this with the intention of simulate a pick and place environment, 
a widely spread application among service robotics, especially, in the area of 
logistics. 
 

Conclusion 
Autonomous navigation was tested using two methods. MRPT reactive navigation 
and ROS navigation stack, whereas this one implements planed navigation using a 
global planner to recreate a path from the starting point to the goal, it should be 
noted that the trajectory covered with the MRPT reactive navigation was similar, 
keeping some distance from obstacles. The teb_local_planner worked better than 
using the general configuration of ROS navigation which is mainly meant for 
differential drive and holonomic wheeled robots, because it takes into 
consideration the kinematics constrains and limitations of robots with Ackermann 
configuration, however, it was not still enough to compete against the MRPT 
reactive navigation, that means, the parameters inside the local planner still can 
be better optimized. 

During the Summit-Powerball application, there were any collisions between robots 
nor the Powerball with the ground, due to the well-performance of the motion 
planner, even though, the end-effector was not used in the real robot, it was 
configured within the motion planner to obtain a better result during the collision 
checking. 
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