
Investigación e Innovación en Ingenierías, vol. 11, n°2, pp. 28-38, 2023 DOI: 10.17081/invinno.11.2.6459

Received: 17/05/2023
Accepted: 11/07/2023
Published: 22/09/2023

Correspondence:

julian_lopez91132@elpoli.edu.co

DOI:
https://doi.org/10.17081/invinno.11.2.
6459

Copyrith 2020 by
Investigación e Innovación en
Ingenierías

Autonomous navigation and indoor mapping for a service robot

Navegación autónoma y mapeo de interiores para un robot de
servicio

Julián López-Velásquez
Politécnico Colombiano Jaime Isaza Cadavid, Colombia

Gustavo A. Acosta-Amaya
 Politécnico Colombiano Jaime Isaza Cadavid, Colombia

Jovani A. Jiménez-Builes
Universidad Nacional de Colombia, Colombia

Abstract

Objetive: Teach the operation of the Summit platform and the Powerball robot manipulator. Simultaneous
Localization and Mapping (SLAM) is a quite common and interesting problem in mobile robotics. It is the
basis of safe autonomous navigation of mobile robots and the entrance to new combined applications
with a manipulator for instance. Methodology: In order to find a solution to the SLAM problem, the ROS
middleware and the MRPT were selected. Autonomous navigation was tested using two methods, the
MRPT navigation ROS package, which is a reactive navigation method based on Trajectory Parameter
Space (TP-Space) transformations, and the ROS navigation stack, a standard for differential drive and
holonomic wheeled robots. Results: To validate the advantages and disadvantages of both approaches, a
mobile robot with strong kinematic constraints (Ackermann-steering-type) known as Summit was used.
As an additional work, an application using the mobile robot Summit and a robotic manipulator
(Powerball) was carried out, with the intention of picking and placing objects of the mobile robot, a widely
spread application among service robotics, especially, in the area of industrial logistics. Conclusions:
Finally, it is concluded that with the tests carried out with the robot, it was possible to demonstrate
autonomous navigation, using the two mentioned methods.

Keywords: SLAM, ROS, MRPT, TP-Space, Robotic, Artificial intelligence.

Resumen
Objetivo: Enseñar el funcionamiento de la plataforma Summit y del robot manipulador Powerball. La
localización y el mapeo simultáneos (SLAM) es un problema bastante común e interesante en la robótica
móvil. Es la base de la navegación autónoma segura de robots móviles y la entrada a nuevas aplicaciones
combinadas, como por ejemplo un manipulador Metodología: con el fin de encontrar una solución al
problema de SLAM, se seleccionaros los middlewares ROS y MRPT. La navegación autónoma se probó
utilizando dos métodos, a saber: el paquete ROS de navegación MRPT que es un procedimiento de
navegación reactivo basado en las transformaciones del espacio de parámetros de trayectoria (TP-Space),
y la pila de navegación ROS, un estándar para accionamiento diferencial y robots con ruedas holonómicas.
Resultados: Para validar las ventajas y desventajas de ambos enfoques, se utilizó un robot móvil con
fuertes restricciones cinemáticas (de tipo dirección Ackermann) conocidas como Summit. Como trabajo
adicional se realizó una aplicación utilizando el robot móvil Summit y un manipulador robótico
(Powerball), con la intención de recoger y colocar objetos desde el robot móvil hacia otros espacios,
especialmente, en el área de logística industrial. Conclusiones: finalmente se concluye que con las pruebas
realizadas con el robot se logró demostrar la navegación autónoma, utilizando los dos métodos
mencionados.

Palabras Claves: SLAM, ROS, MRPT, Espacio-TP, Robótica, Inteligencia artificial.

How to cite (IEEE): J. López-Velásquez., G. Acosta-Amaya., y J. Jiménez-Builes “Autonomous navigation and
indoor mapping for a service robot". Investigación e Innovación en Ingenierías, vol. 11, n°2, 28-38, 2023. DOI:
https://doi.org/10.17081/invinno.11.2.6459

https://doi.org/10.17081/invinno.11.2.6459
https://doi.org/10.17081/invinno.11.2.6459
https://doi.org/10.17081/invinno.11.2.6459
https://doi.org/10.17081/invinno.11.2.6459
https://doi.org/10.17081/invinno.11.2.6459
https://doi.org/10.17081/invinno.11.2.6459
https://orcid.org/0000-0002-3011-7758
https://orcid.org/0000-0002-7270-9604
https://orcid.org/0000-0001-7598-7696

Autonomous navigation and indoor mapping for a service robot

Investigación e Innovación en Ingenierías, vol. 11, n°2, pp. 28-38, 2023 DOI: 10.17081/invinno.11.2.6459

Introduction
The applications of robotics have generally focused on the industrial areas, mainly
mass production. These machines perform repetitive, tedious, and dangerous tasks
for humans [1]. Since the last decade, the industrial robots stopped being of
exclusive employment inside the production plants, focusing their applications in
domestic areas, entering in a new and beneficial field known as service robotics [2].
The concept of service robot, according to the International Organization for
Standardization (ISO 8373), can be defined as a robot that performs useful tasks for
humans or equipment excluding industrial automation applications. However, it is
worth mentioning the fact that those robots tend to operate partially or completely
autonomously and the tendency is to reduce human intervention to the minimum.
A simple task that any service robot must perform is to navigate in most of the
cases through unstructured (unknown) environments; therefore, maps are not
available, and the robot must build one on its own. The effectiveness and efficiency
of navigation depends on having a map without large errors. However, this process
is only one of the challenges any service robot must face in order to achieve a
decent autonomous navigation.

Autonomous navigation is one of the most important objectives in mobile robotics
[3]. It has three fundamental objectives: (1) autonomous exploration of known or
unknown environments, (2) mapping, and (3) localization. In addition, the
preparation of maps or models of the environment is a fundamental task in mobile
and service robotics. Service robots can implement two types of navigation: (1)
Navigation based on maps and (2) navigation without models (without maps). The
map-based navigation requires a priory representation of the environment in order
to plan trajectories that allow the robot to go from one point to another. However,
it is not always possible to have a map, when the robot must carry out tasks in an
unknown environment, then it must perform an exploration of the place in which
is located, with the purpose of building a model or map of the environment. This
work becomes complex because it is necessary for the robot to estimate its location
on a map that is hardly in the process of being built. It means that the robot must
solve simultaneously the problem of mapping and localization, both highly
interrelated. This problem is known as Simultaneous Localization and Mapping
(SLAM) [4]. The main objective of the present project is to implement and validate
different algorithms for the autonomous navigation and mapping of indoor
environments in a service robot, including solving the SLAM problem. The
algorithms shall be implemented in an Ackermann-steering-type mobile robot
known as Summit. In [5] an affordable solution for navigation and localization to
operate in indoor environments, involving ROS, the TurtleBot2 robot, a Kinect
sensor, a laptop and a pre-built map of an unknown environment is presented. In
[6] a differential drive non-holonomic robot equipped with various onboard
sensors (ultrasonic, Kinect, encoder) was developed and described how a ROS
based control system and the gmapping package were used to achieve localization,
autonomous navigation and mapping in an office like environment. [7] described a
ROS-based control system applied to the Pioneer 3-DX robot used for the mapping,
localization and autonomous navigation. [8] implemented and evaluated different
methods of autonomous navigation: Pure Pursuit (which ended up discarded since
the route followed by the robot was determined by the user while the others, the
path was calculated by the robot itself), the ROS navigation stack and MRPT [9] pure
reactive navigation.

What remains of this article is organized as follows: in section two the materials
and methods used for the mapping, autonomous navigation and the pick & place
application are presented. The algorithms used for mapping and autonomous
navigation are discussed in section three. In section four, an application that
combines a mobile platform (Summit) and a robot manipulator (Powerball) is

https://doi.org/10.17081/invinno.11.2.6459

Julián López-Velásquez, Gustavo A. Acosta-Amaya, Jovani A. Jiménez-Builes

Revista Investigación e Innovación en Ingenierías, vol. 11, n°2, pp. 28-38, 2023 DOI: 10.17081/invinno.11.2.6459

explained. Results and discussion are presented in section five. Finally, the
conclusions and the bibliography are shown.

Methodology
Never as before, robotic systems have had to perform the kind of tasks that are
currently required [10, 11]. In this research, the approach has been to implement a
solution for mapping and autonomous navigation on a service robot. Furthermore,
a pick and place application combining a mobile robot and a robotic manipulator
[12] suited for logistics or service robotics was carried out:

Robot Operating System (ROS). Is an open-source robotics middleware. ROS
provides a distributed programming environment, for both, real and simulated
robots, as well as hardware abstraction, low-level control, message-passing
between processes, software package management and tools and libraries for
obtaining, building, writing, and running code across multiple computers. ROS has
witnessed a huge community with increasing number of users and developers from
academia and industry, as well as hobbyists. Nowadays, ROS has become the de-
facto standard for robotics research [13].

Mobile Robot Programming Toolkit (MRPT). It is an open-source C++ library which
provides developers with portable and well-tested applications covering data
structures and algorithms employed in common robotics research areas [14].

Robot Summit. It is an Ackermann-steering-type mobile robot with a 4x4 traction
system. It has an embedded PC (Intel DN2800MT, 4GB of RAM and a 2.5 SATA HDD).
The robot was modified to be able to use the Hokuyo UST-20LX and the Asus Xtion
pro live as the main data acquisition sensors [15].

Schunk LWA4P (Powerball). It is a lightweight robot arm, especially suited for mobile
applications due to its internal controllers. The low current input makes it possible
to operate the lightweight arm either via a power supply or battery. The arm is
controlled via CAN bus interface with CANopen protocol. It is essentially composed
of three double-axis rotary modules in different sizes and a coupling flange for an
end effector/gripper or a sensor [16].

Workstation. Lenovo Yoga 510 series with Intel Core i3-6100U CPU @ 2.30GHz x 4
processor, 7.7 GB of RAM and 114.5 GB of HDD.

Mapping & autonomous navigation algorithms

Mapping. In order to set autonomous navigation, a map shall be created [17], in this
particular case, we used the MRPT. It should be noted the type of format it uses,
which is known as Rawlog format. It stores the datasets and are the input of many
MRPT applications for off-line processing. Since the use of MRPTROS is fundamental
regarding this project, therefore, to obtain a map that works without complications,
data will be acquired using rosbags and then transformed to MRPT format. It should
be mentioned that the gmapping package is also a well-suited option.

MRPT reactive navigation. The MRPT navigation is a pure reactive navigation method
based on Trajectory Parameterized Space (TP-Space) (See Figure 1) and
Parameterized Trajectory Generator (PTGs). It is not map-based unlike ROS
navigation. It means, the system generates a real-time “inner” obstacle-map and
traces an optimal path based on the free-space [18].

https://doi.org/10.17081/invinno.11.2.6459

Autonomous navigation and indoor mapping for a service robot

Investigación e Innovación en Ingenierías, vol. 11, n°2, pp. 28-38, 2023 DOI: 10.17081/invinno.11.2.6459

- Trajectory parameterized space. TP-Space is defined as a two-dimensional space
where each point corresponds to a robot pose on C-Space sampling surface. The
components of this space are an angular component α and a distance d [19].

- Parameterized trajectory generator. The MRPT reactive navigation well-
performance lies in the implementation of a set of path models to measure the
distance to obstacles known as Parameterized Trajectory Generator (PTGs). They
are a mapping of TP-Space points (α, d) into C-Space poses ((x, y), θ) so the straight
path from origin becomes compatible with C-Space.

Figure 1. A complete reactive navigation system based on TP-Space involves a variety of PTGs
that simultaneously translate obstacles and the target location into the TP-Space. A
holonomic reactive navigation method selects a desired motion in TP-Space. The most
advantageous PTG is selected and translates the holonomic motion into a non-holonomic
one, generating the velocity commands for the real robot.

Source: [19].

RPT reactive navigation. The ROS Navigation stack (See Figure 2) contains two
different planners. The global_planner which only calculates the shortest path from
the robot estimated starting point on the map to its destination [20], not taking into
consideration unexplored obstacles, and the local_planner which reacts to the
local environment and those uncharted obstacles, replanning the trajectory if
needed. This method is mainly meant for differential drive and holonomic wheeled
robots; therefore, it does not care about the Ackermann steering of the mobile
robot and its minimum turning radius. In order to fix it, the teb_local_planner
package tries to overcome this limitation. This one shall run as the local planner,
and also will compute the velocity commands based on its path. It requires a lot of
information as input, which ultimate affects the result and the performance of the
calculation.

Figure 2. ROS Navigation stack

Source: Own elaboration

https://doi.org/10.17081/invinno.11.2.6459

Julián López-Velásquez, Gustavo A. Acosta-Amaya, Jovani A. Jiménez-Builes

Revista Investigación e Innovación en Ingenierías, vol. 11, n°2, pp. 28-38, 2023 DOI: 10.17081/invinno.11.2.6459

Localization. In order to accomplish a well performed navigation, the autonomous
driving car needs to get localized within the map correctly. From the start until the
very end, the robots odometry is calculated based on velocity commands such as
the speed and the steering angle, however, since the robots initial position begins
on an estimated point, its odometry is not exact at all. Therefore, a localization
algorithm is required to get a more precise position of the robot within map. ROS
navigation uses the Adaptive Monte Carlo Localization (AMCL) [21], which is an
algorithm that uses a particle-filter to track the pose of a robot against a known
(laser-based) map. The MRPT reactive navigation uses the MRPT localization
package, which is a similar interface to AMCL, however, its advantage is that it
supports different particle-filter algorithms.

Mobile platform Summit & robot manipulator Powerball
The Summit robot was controlled using a joystick in order to move it around to
some specific areas (See Figure 3) due to the limited space in which the
autonomous navigation was not very accurate, at the same time its localization was
determined with the MRPT localization package. Once the Summit robot reached
one of the areas, a motion planning (MoveIt) run, trying to pose the Powerball end
effector above an additional fixed link (to gripper link) which was added 15 cm
above the top of the Summit URDF model, its purpose was to act as a reference for
the Powerball end-effector. It means, that was the position the end-effector had to
reach in order to start the pick and place actions.

The end-effector of the Powerball robot was not used to avoid possible collisions
with the Summit or the surroundings, a black sponge-like material with similar
dimensions was used instead. It should be noted that is fully functional within the
simulation, also the end-effector was added to the motion planner (MoveIt) in order
to recreate a more rigorous movement trajectory.

Figure 3. Powerball-Summit Work-Area

Source: Own elaboration

MoveIt! It is a high-level open-source package originally written thoroughly in C++
and later optimized for real-time performance. Earned its place as the most
popular motion planning platform mainly due to the fact that its setup assistant
GUI allowed a large community of non-experts and robotics hobbyists to access the
many capabilities of the framework such as, motion planning, inverse kinematics,
3D perception, collision checking, into a variety of robots or even to test their own,
which ultimately lead into the growth, contribution to the software’s development
and maintenance [22]. The core and integrator of MoveIt! high-level system is the
ROS node move_group (See Figure 4) which in brief, it allows the user to interact

https://doi.org/10.17081/invinno.11.2.6459

Autonomous navigation and indoor mapping for a service robot

Investigación e Innovación en Ingenierías, vol. 11, n°2, pp. 28-38, 2023 DOI: 10.17081/invinno.11.2.6459

with ROS actions and services and command the robot using one of the following
methods (C++ / Python API, or GUI plugin to Rviz). This node gathers the information
regarding the robot and its surroundings (JointState, TF, Point Cloud) through ROS
topics [23]. The robot description (kinematics, joint limits) included in the URDF and
SRDF files, and obtained through the ROS param server. Noteworthy, the
configuration files are automatically generated by MoveIt!’s assistant and stored
inside the resulting ROS package.

Motion planning. Motion planning is “the technique to find an optimum path that
moves the robot gradually from the start pose to the goal pose, while never
touching any obstacles in the world and without colliding with the robot links” [24].
In order to guarantee the extensibility within MoveIt! components and impulsing
the framework to become successful, its plugin-based architecture was a game-
changing which allowed the software to be re-usable and provided the tools to
create custom solutions [22].

Figure 4. MoveIt architecture diagram

Source: Own elaboration

This takes us back to the core node move_group, which through a couple of key
components (ROS messaging system and the lightweight plugin interface [22]) allow
the user to run the default planner OMPL (Open Motion Planning Library) [25] or
any other. To start the motion planning, it all begins by using the ROS
actions/services to send a request to the motion planner. That call specifies the
planning requirements (i.e. to modify the current position of the actuator and/or
end-effector) and, through ROS topics the node comprehends the robot’s global
pose and the behavior of each joint, taking into consideration that at the same time
a previously defined collision check is making sure the inbuilt kinematic (position,
orientation, visibility) and user-specified constraints are under control. Finally, the
result trajectory will be returned by the node complying with the default and
modified constraints, as well as using the specified joint velocities [26].

Kinematics. The setup assistant uses by definition the KDL numerical jacobian-
based solver, however, as It has already been established, due to MoveIt! highly
relies on the use of plugin infrastructure versatility, it permits the user to
implement its own inverse kinematic (IK) solver by using the package IKFast which
generates the C++ files for later use [27]. It should be noted that the IKFast plugin
generator tool does not work with manipulators that poses more than 7 DOF [26].

https://doi.org/10.17081/invinno.11.2.6459

Julián López-Velásquez, Gustavo A. Acosta-Amaya, Jovani A. Jiménez-Builes

Revista Investigación e Innovación en Ingenierías, vol. 11, n°2, pp. 28-38, 2023 DOI: 10.17081/invinno.11.2.6459

Collision checking. It deeply relies on the FCL library [28] Despite being a costly
computational operation, it is mostly transparent to the user; fortunately, there are
some strategies that the user can implement in order to reduce the complexity.
During MoveIt! setup assistant an automatic self-collision matrix is created [22],
depending on the complexity of the manipulator, the resulting matrix can turn out
very decent, though, once again, the user can modify it in order to disable or enable
collision checking between links or the environment.

Results
The main results obtained during the research are described below.
Mapping. In order to generate the maps, a dataset containing the odometry, laser
measurements, tf, etc., was created completing the circuit in Figure 5. All obstacles
are presented as black pixels, and free-spaces are the light gray areas, where the
Summit is able to go. Glass doors are not detected as obstacles by the laser.
Figure 5. Circuit covered by the Summit robot to generate a map

Source: Own elaboration

Autonomous navigation. Countless experiments of exploration of the workplace
with remote teleoperation were conducted in order to obtain the necessary
datasets to generate the best map to set the autonomous navigation with the
methods described in chapter three. The objective of the autonomous navigation
was to reveal the advantages and disadvantages offered by each one of the
methods, taking into consideration the rectangular shape and Ackerman
configuration of the robot.

Figure 6. SLAM maps of (a) lab 1.10 CITE IV and (b) CITE IV floor 1

(a)

(b)

Source: Own elaboration

https://doi.org/10.17081/invinno.11.2.6459

Autonomous navigation and indoor mapping for a service robot

Investigación e Innovación en Ingenierías, vol. 11, n°2, pp. 28-38, 2023 DOI: 10.17081/invinno.11.2.6459

The tests were performed in the CITE IV building of Universidad de Almería. In the
area that corresponds to Figure 6a, the robot had to clear one lap, however, during
the second try with MRPT, the robot was able to complete two laps, not being the
case with ROS navigation. In the area that corresponds to figure 6b the robot had
to go to the end of the corridor and returned. In both cases, the linear and angular
speeds were set to 0.5 m/s and 0.6 rad/s respectively, in order to guarantee fair
conditions. The sensorial system is based in a low-cost LIDAR, a depth sensor and
encoders. A representation of the maps is shown in figure 6. Among the many
criteria to compare both methods of navigation (computational expenses, safest
path), the execution time was selected, that is, the amount of time the Summit
robot needed to clear the path. Results are summarized in Table 1.

Table 1. Autonomous navigation results

MRPT navigation ROS navigation

Lab 1.10 Corridor Lab 1.10 Corridor

70 s 303 s 598 s 973 s

80 s (Lap 1) – 434 s –

70 s (Lap 2) – 628 s –

Source: Own elaboration

In both navigation packages a localization system based on an adaptive particle
filter [29, 30] has been used. The ROS navigation included the AMCL package,
whereas the MRPT reactive navigation used the mrpt_localization_package, which
is a similar interface to AMCL but supporting different particle filter algorithms and
sensors. In both cases, the estimated robot position in the map is shown as a cloud-
point of red arrows, as displayed in Figure 7.

Figure 7. Local (green line) and Global (blue line) paths generated by the Local and Global
planners of ROS navigation

Source: Own elaboration

A Powerball & Summit. As mentioned in section four, the Summit robot was
controlled with a joystick due to the autonomous navigation ineffectiveness in the
small work-area; on the other hand, the Powerball robot was working
autonomously with the help of the motion planner MoveIt.

https://doi.org/10.17081/invinno.11.2.6459

Julián López-Velásquez, Gustavo A. Acosta-Amaya, Jovani A. Jiménez-Builes

Revista Investigación e Innovación en Ingenierías, vol. 11, n°2, pp. 28-38, 2023 DOI: 10.17081/invinno.11.2.6459

Figure 8. Powerball - Summit ROS TF

Source: Own elaboration

Once the Summit robot arrived to a specific area, the Powerball tried to pose its
end-effector above the additional fixed link (to gripper link) added in the Summit’s
URDF model. All this with the intention of simulate a pick and place environment,
a widely spread application among service robotics, especially, in the area of
logistics.

Conclusion
Autonomous navigation was tested using two methods. MRPT reactive navigation
and ROS navigation stack, whereas this one implements planed navigation using a
global planner to recreate a path from the starting point to the goal, it should be
noted that the trajectory covered with the MRPT reactive navigation was similar,
keeping some distance from obstacles. The teb_local_planner worked better than
using the general configuration of ROS navigation which is mainly meant for
differential drive and holonomic wheeled robots, because it takes into
consideration the kinematics constrains and limitations of robots with Ackermann
configuration, however, it was not still enough to compete against the MRPT
reactive navigation, that means, the parameters inside the local planner still can
be better optimized.

During the Summit-Powerball application, there were any collisions between robots
nor the Powerball with the ground, due to the well-performance of the motion
planner, even though, the end-effector was not used in the real robot, it was
configured within the motion planner to obtain a better result during the collision
checking.

Bibliographic References

[1] R. Megalingam, V. Naick, M. Motheram, J. Yannam, N. Gutlapalli & V.
Sivanantham. "Robot operating system based autonomous navigation platform
with human robot interaction". Telkomnika (Telecommunication Computing
Electronics and Control), 21 (3), pp. 675 - 683, 2023. DOI:
https://doi.org/10.12928/TELKOMNIKA.v21i3.24257.
[2] O. Chi, C. Chi, D. Gursoy & R. Nunkoo. "Customers’ acceptance of artificially
intelligent service robots: The influence of trust and culture". International Journal
of Information Management, 70, 2023. DOI:
https://doi.org/10.1016/j.ijinfomgt.2023.102623.
[3] R. Megalingam, B. Tanmayi, G. Reddy, I. Krishna, G. Sree & S. Pai. "ROS-based
GUI controlled robot for indoor mapping and navigation". Lecture Notes on Data
Engineering and Communications Technologies, 58, pp. 283 - 294, 2021. DOI:
https://doi.org/10.1007/978-981-15-9647-6_22.

https://doi.org/10.17081/invinno.11.2.6459
https://doi.org/10.12928/TELKOMNIKA.v21i3.24257.
https://doi.org/10.1016/j.ijinfomgt.2023.102623.
https://doi.org/10.1007/978-981-15-9647-6_22.

Autonomous navigation and indoor mapping for a service robot

Investigación e Innovación en Ingenierías, vol. 11, n°2, pp. 28-38, 2023 DOI: 10.17081/invinno.11.2.6459

[4] H. Durrant-Whyte & T. Bailey “Simultaneous localization and mapping
(SLAM): Part I the essential algorithms”. IEEE Robotics Automation Magazine,
13(2):99110, 2006. DOI: https://doi.org/10.1109/MRA.2006.1638022.
[5] O. Hamzeh & A. Elnagar. “Localization and navigation of autonomous indoor
mobile robots”. International Journal of Computing, Communications &
Instrumentation Engg., vol. 2, pp. 228-233, 2015.
[6] N. Mohan, T. Shreekanth & B. Sandeep “Autonomous robot based on robot
operating system (ROS) for mapping and navigation”. International Journal of
Computer Science & Engineering Technology, vol. 6(7), pp. 449-457, 2015.
[7] S. Zaman, W. Slany & G. Steinbauer “ROS-based mapping, localization and
autonomous navigation using a pioneer 3-DX robot and their relevant issues”. In:
Saudi International Electronics, Communications and Photonics Conference
(SIECPC), pp. 15, 2011. DOI: https://doi.org/10.1109/SIECPC.2011.5876943.
[8] E. Rodríguez. “Navegación autónoma de un robot móvil Summit”. Doctoral
thesis. Universidad de Almería, España, 2015.
[9] J. Blanco. “Mobile Robot Programming Toolkit (MRPT)”. [Online]. Available:
https://w3.ual.es/~jlblanco/software/ [Last access: 03 May 2023].
[10] A. Moniz & B. Krings Robots working with humans or humans working with
robots? Searching for social dimensions in new human robot interaction in industry
societies. Societies, vol. 6(3), pp. 123, 2016. DOI: https://doi.org/10.3390/soc6030023.
[11] H. Rasheed, Y. He, H. Khizar & H. Abbas. "Exploring consumer-robot
interaction in the hospitality sector: Unpacking the reasons for adoption (or
resistance) to artificial intelligence". Technological Forecasting and Social Change,
192, 2023. DOI: https://doi.org/10.1016/j.techfore.2023.122555
[12] G. Schunk. “Assembly and Operating Manual LWA 4P”. Schunk GmbH & Co.
KG. Assembly and Operating Manual LWA 4P. [Online]. Available:
https://schunk.com [Last access: 3 May 2023].
[13] T. Itsuka, M. Song, A. Kawamura & R. Kurazume “Development of ROS2-TMS:
New software platform for informationally structured environment”. ROBOMECH
Journal, 9(1), 2022. DOI: https://doi.org/10.1186/s40648-021-00216-2.
[14] H. Zhang, L. Yu & S. Fei. “Design of dual-LiDAR high precision natural
navigation system”. IEEE Sensors Journal, 22(7), pp. 7231-7239, 2022. DOI:
https://doi.org/10.1109/JSEN.2022.3153900.
[15] L. Contreras, T. Yamamoto, Y. Matsusaka & H. Okada “Towards general
purpose service robots: World Robot Summit–Partner Robot Challenge”. Advanced
Robotics, 2022. DOI: https://doi.org/10.1080/01691864.2022.2109428.
[16] Z. Wang, J. Peng, M. Dong, S. Song, S. Ding & Y. Liu. “Novel trajectory planning
method based on double quaternion and Tau theory”. Lecture Notes in Electrical
Engineering, pp. 482-491, 2022. DOI: https://doi.org/10.1007/978-981-16-6372-7_54.
[17] V. Raja, D. Talwar, A. Manchikanti & S. Jha. “Autonomous navigation for
mobile robots with sensor fusion technology”. Lecture Notes in Mechanical
Engineering, pp. 13-23, 2023. DOI: https://doi.org/10.1007/978-981-19-0561-2_2.
[18] N. Baslan, S. Heerklotz, S. Weber, A. Heerklotz, B. Hofig & J. Abu-Khalaf.
“Navigation and vision system of a mobile robot”. In: Proceedings of the 19th
International Conference on Research and Education in Mechatronics, Nro. 8421777,
pp. 99-104, 2018. DOI: https://doi.org/10.1109/REM.2018.8421777.
[19] J. Blanco, J. González & J. Fernández. “Extending obstacle avoidance
methods through multiple parameter-space transformations”. Autonomous
Robots, vol. 24, pp. 2948, 2008. DOI: https://doi.org/10.1007/s10514-007-9062-7.
[20] H. Cheon, T. Kim, B. Kim, J. Moon & H. Kim. "Online waypoint path refinement
for mobile robots using spatial definition and classification based on collision
probability". IEEE Transactions on Industrial Electronics, 70 (7), pp. 7004 - 7013, 2023.
DOI: https://doi.org/10.1109/TIE.2022.3203684.
[21] F. Dellaert, D. Fox, W. Burgard & S. Thrun. “Monte Carlo localization for
mobile robots”. In: Proceedings - IEEE International Conference on Robotics and

https://doi.org/10.17081/invinno.11.2.6459
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1109/SIECPC.2011.5876943
https://doi.org/10.3390/soc6030023
https://doi.org/10.1016/j.techfore.2023.122555
https://doi.org/10.1186/s40648-021-00216-2.
https://doi.org/10.1109/JSEN.2022.3153900
https://doi.org/10.1080/01691864.2022.2109428
https://doi.org/10.1007/978-981-16-6372-7_54
https://doi.org/10.1007/978-981-19-0561-2_2
https://doi.org/10.1109/REM.2018.8421777.
https://doi.org/10.1007/s10514-007-9062-7.
https://doi.org/10.1109/TIE.2022.3203684.

Julián López-Velásquez, Gustavo A. Acosta-Amaya, Jovani A. Jiménez-Builes

Revista Investigación e Innovación en Ingenierías, vol. 11, n°2, pp. 28-38, 2023 DOI: 10.17081/invinno.11.2.6459

Automation, vol. 2, pp. 1322-1328, 1999. DOI:
https://doi.org/10.1109/ROBOT.1999.772544.
[22] D. Coleman, I. Sucan, S. Chitta & N. Correll. “Reducing the barrier to entry of
complex robotic software: A MoveIt! case study”. Journal of Software Engineering for
Robotics, vol. 1(1), 2014.
[23] L. Yin, J. Liu, F. Zhou, M. Gao & M. Li. "Cost-based hierarchy genetic algorithm
for service scheduling in robot cloud platform". Journal of Cloud Computing, 12 (1),
Nro. 35, 2023. DOI: https://doi.org/10.1186/s13677-023-00395-w.
[24] L. Joseph. “Mastering ROS for robotics programming”. Second edition. Packt
Publishing Ltd., USA, 2015.
[25] OMPL “The open motion planning library”. Technical report. Kavraki Lab,
Department of Computer Science. [Online]. Available: https://ompl.kavrakilab.org/
[Last access: 03 May 2023].
[26] Movelt "Concepts". Technical report. PickNik Robotics. [Online]. Available:
https://moveit.ros.org/documentation/concepts/ [Last access: 03 May 2023].
[27] R. Smits. “KDL: Kinematics and dynamics library”. Technical report. Orocos
Kinematics and Dynamics. [Online]. Available: http://www.orocos.org/kdl [Last
access: 03 May 2023].
[28] J. Pan, S. Chitta & D. Manocha. "FCL: A general purpose library for collision
and proximity queries," 2012 IEEE International Conference on Robotics and
Automation, Saint Paul, USA, pp. 3859-3866, 2012, DOI:
https://doi.org/10.1109/ICRA.2012.6225337.
[29] J. Martínez Garcés y J. Barreto Fereira, “Modelo de planeación para la inversión
tecnológica en centros de investigación universitarios”, Investigación e Innovación
en Ingenierías, vol. 7, n.º 2, jul. 2019. DOI: https://doi.org/10.17081/invinno.7.2.3448
[30] D. Fox. “KLD-sampling: Adaptive particle filters”. Advances in Neural
Information Processing Systems, pp. 713-720, 2001.

https://doi.org/10.17081/invinno.11.2.6459
https://doi.org/10.1109/ROBOT.1999.772544
https://doi.org/10.1186/s13677-023-00395-w
https://doi.org/10.1109/ICRA.2012.6225337
https://doi.org/10.17081/invinno.7.2.3448

