407
22. Suarez-Torres I, Reyna-Villasmil E, Mejia-Montilla J, Reyna-Villasmil N, Torres-Cepeda D, Santos-
Bolívar J, et al. Original: Proteína C reactiva plasmática en el segundo trimestre para predicción de
parto pretérmino. Perinatol Reprod Hum. 2016; 30(2), 57-62. DOI: 10.1016/j.rprh.2016.06.008
23. Lucovnik M, Chambliss LR, Blumrick R, Balducci J, Gersak K, Garfield RE. Effect of obesity on
preterm delivery prediction by transabdominal recording of uterine electromyography. Taiwan J
Obstet Gynecol. 2016; 55(5): 692-696. DOI: 10.1016/j.tjog.2015.05.005
24. Euliano TY, Nguyen MT, Darmanjian S, Busowski JD, Euliano N, Gregg AR., et al. Monitoring
Uterine Activity during Labor: Clinician Interpretation of Electrohysterography versus Intrauterine
Pressure Catheter and Tocodynamometry. Am J Perinatol. 2016; 33(9): 831-8. DOI: 10.1055/s-
0036-1572425
25. Altini M, Rossetti E, Rooijakkers M, Dy E, Penders J, Grieten L, Gyselaers W. 762: Remote labour
detection using maternal electrohysterography and heart rate data acquired with a wearable sensor.
Am. j. obstet. gynecol. [Internet]. 2017 [citado 2019 Nov 23]; 216(1), S441-S442. DOI_
10.1016/j.ajog.2016.11.495
26. Idowu P, Fergus A, Hussain C, Dobbins H, Al-askar P, Fergus A, et al. Técnicas avanzadas de
clasificación de redes neuronales artificiales que utilizan EHG para detectar nacimientos
prematuros. Conf. Softw inteligente complejo. Syst intensivo. 2014; 8(1).
27. Alamedine D, Marque K, Alamedine D, Khalil M. Binary particle swarm optimization for feature
Selection on uterine electrohysterogram signal. 2nd International Conference on Advances in
Biomedical Engineering Date of Conference; 11-13 Sept. 2013. Tripoli, Lebanon: IEEE Conference
Location. https://ieeexplore.ieee.org/document/6648863/
28. Horoba K, Jezewski J, Matonia A, Wrobel J, Czabanski R, Jezewski M, et al. Early predicting a risk
of preterm labour by analysis of antepartum electrohysterograhic signals. Biocybern Biomed Eng.
[Internet]. 2016 [citado 2019 Nov 25]; 36(4), 574-583. Disponible en: DOI:
10.1016/j.bbe.2016.06.004.
29. Diab A, Hassan M, Marque C, Karlsson B. Quantitative performance analysis of four methods of
evaluating signal nonlinearity: Application to uterine EMG signals. Conf Proc IEEE Eng Med Biol
Soc. 2012; 1045-8. DOI: 10.1109/EMBC.2012.6346113
30. Punitha N, Ramakrishnan S. Analysis of uterine electromyography signals in preterm condition
using multifractal algorithm. Conf Proc IEEE Eng Med Biol Soc. 2018; 1-4.
DOI: 10.1109/EMBC.2018.8512891
31. Sim S, Ryou H, Kim H, Han J, Park K. Evaluation of Electrohysterogram Feature Extraction to
Classify the Preterm and Term Delivery Groups. In: Goh J. (eds). The 15th International Conference
on Biomedical Engineering. IFMBE Proceedings, vol 43. Springer, Cham.
32. Chen L, Hao Y, Hu X. Detection of preterm birth in electrohysterogram signals based on wavelet
transform and stacked sparse autoencoder. PLoS ONE. [Internet]. 2019 [citado 2019 Nov. 23]; 14:
1-16. DOI: 10.1371/journal.pone.0214712
33. Lemancewicz A, Kuc P, Doroszkiewicz K, Laudanski P, Jasinska E, Oczeretko E, et al. O389 Early
Diagnosis of Threatened Premature Labor by Electrohysterographic Recordings. Int. j. gynecol.
obstet., Suppl. [Internet] 2012 [citado 2019 Nov 23]; 119(3), S398. DOI: 10.1016/S0020-
7292(12)60819-4
34. Smrdel A, Jager F. Separating sets of term and pre-term uterine EMG records. Physiol Meas.
[Internet] 2015 [citado 2019 Nov 22]; 36(2), 341-355. DOI: 10.1088/0967-3334/36/2/341