Trading through the RSI indicator with the application of genetic algorithms for implementation in the investment business sector

Main Article Content

Alberto Antonio Agudelo Aguirre https://orcid.org/0000-0001-6647-3482
Ricardo Alfredo Rojas Medina https://orcid.org/0000-0002-9135-2065
Néstor Darío Duque Méndez https://orcid.org/0000-0002-4608-281X

Keywords

Investment strategies, stock markets, automatic trading, quantitative trading

Abstract

Objective: This study proposes a methodology for the literature on equity asset investment applied through Genetic Algorithms and their implementation in the business investment sector. Method: The study was conducted by simulating B&H, AT, and AG investment strategies on the equity index. The investment return maximization process for financial assets was developed using genetic algorithms based on equations defined in chromosome classification with gene-immersive operations. It began with a random population of individuals with chromosomes representing a solution to achieve the greatest return possible. Results: The application of algorithms with the RSI generated returns that were 9% and 16% higher than those with B&H and technical analysis, respectively, indicating a greater investment risk for B&H with a volatility of 17.6% but comparable to those shown by genetic algorithms and technical analysis. Discussions: An improved risk–return ratio and efficiency in the key parameters of Portfolio Theory is possible through investment strategies based on genetic algorithms, including the RSI oscillator. Conclusions: This study suggests that an improvement in the return on investment may be expected through the stop loss and take profit parameters and a range of motion of the asset price before taking a position.

Downloads

Download data is not yet available.
Abstract 606 | PDF (Español (España)) Downloads 280 XML (Español (España)) Downloads 102 ePUB (Español (España)) Downloads 30

References

Abrams, J. R., Celaya-Alcalá, J., Ryan Gonda, D. B., & Chen, Z. (2017). Analysis of equity markets: a graph theory approach. https://evoqeval.siam.org/Portals/0/Publications/SIURO/Volume%2010/Analysis_Equity_Markets_A_Graph_Theory_Approach.pdf?ver=2018-02-28-145946-083

AFI Escuela de Finanzas España. (2017). AFI guías. Análisis técnico-17. https://docero.es/doc/508v50

Agudelo Aguirre, A. A., Rojas Medina, R. A., & Duque Méndez, N. D. (2020). Machine learning applied in the stock market through the Moving Average Convergence Divergence (MACD) indicator. Investment Management and Financial Innovations, 17(4), 44-60. https://doi.org/10.21511/imfi.17(4).2020.05

Allen, F., & Karjalainen, R. (1999). Using genetic algorithms to find technical trading rules. Journal of Financial Economic, 51(2), 245-271. https://doi.org/10.1016/S0304-405X(98)00052-X

Boboc, I-A., & Dinică, M-C. (2013). An algorithm for testing the efficient market hypothesis. PLoS ONE, 8(10), e78177. https://doi.org/10.1371/journal.pone.0078177

Burduk, A., Musiał, K., Kochańska, J., & Łapczyńska, D. (2019). Tabu search and genetic algorithm for production process scheduling problem. Scientific Journal of Logistics, 15(2), 181-189. https://doi.org/10.17270/J.LOG.2019.315

Chen, Y., Mabu, S., & Hirasawa, K. (2011). Genetic relation algorithm with guided mutation for the large-scale portfolio optimization. Expert System with Applications, 38 (4), 3353-3363. https://doi.org/10.1016/j.eswa.2010.08.120

Cheng, C-H., Chen, T-L., & Wei, L-Y. (2010). A Hybrid model based on rough sets theory and genetic algorithms for stock price forecasting. Information Science, 180(9), 1610-1629. https://doi.org/10.1016/j.ins.2010.01.014

Chou, C.-C., & Lin, K.-S. (2019). A fuzzy neural network combined with technical indicators and its application to Baltic dry index forecasting. Journal of Marine Engineering & Technology, 18 (2), 82-91. https://doi.org/10.1080/20464177.2018.1495886

Cohen, G., & Cabiri, E. (2015). ¿Can technical oscillators outperform the buy and hold strategy? Applied Economics, 47(30), 3189-3197. https://doi.org/10.1080/00036846.2015.1013609

Cortés-Villafradez, R. A., y Hernández-Luna, Y. (2014). Impacto del desarrollo del sistema financiero en el crecimiento económico en países emergentes durante el periodo 2001-2011. Equidad y Desarrollo 1(22), 99-120. https://doi.org/10.19052/ed.3252

Ding, S., Cui, T., Xiong, X., & Bai, R. (2020). Forecasting stock market return with nonlinearity: a genetic programming approach. J Ambient Intell Human Comput, 11, 4927–4939. https://doi.org/10.1007/s12652-020-01762-0

Drake, A. E., & Marks, R. E. (2002). Genetic algorithms in economics and finance: forecasting stock market prices and foreign exchange—a review. En, Chen SH. (eds). Genetic algorithms and genetic programming in computational finance (pp. 29-54). https://doi.org/10.1007/978-1-4615-0835-9_2

Evans, C., Pappas, K., & Xhafa, F. (2013). Utilizing artificial neural networks and genetic algorithms to build an algo-trading model for intra-day foreign exchange speculation. Mathematical and Computer Modelling, 58 (5-6), 1249-1266. https://doi.org/10.1016/j.mcm.2013.02.002

Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383-417. https://doi.org/10.2307/2325486

Farias-Nazário, R. T., Lima e Silva, J., Sobreiro, V. A., & Kimura, H. (2017). A literature review of technical analysis on stock markets. The Quarterly Review of Economics and Finance, 66, 115-126. https://doi.org/10.1016/j.qref.2017.01.014

Fernández-Rodríguez, F., González-Martel, C., & Sosvilla-Rivero, S. (2001). Optimization of technical rules by genetic algorithms: evidence from the Madrid stock market. [Documento de trabajo]. FEDEA. www.//.ftp://ftp.fedea.es/pub/Papers/2001/dt2001-14.pdf

Figueroa-Pelayo, A. P., y Gualdron-López, A. E. (2014). Importancia de los índices bursátiles en el mercado de Colombia. Innovando en la U, 5(6), 123-131. https://revistas.unilibre.edu.co/index.php/innovando/article/view/3880

Forrest, S. (1993). Genetic algorithms: Principles of adaptation applied to computation. Science 261 (August 13), 872- 878. https://doi.org/10.1126/science.8346439

Forrest, S. (1996). Genetic Algorithms. ACM Computing Surveys, 28(1), 77-80. https://dl.acm.org/doi/10.1145/234313.234350

García, M. C., Jalal, A. M., Garzón, L. A., & López, J. M. (2013). Methods for predicting stock indexes. Ecos de Economía, 17(37), 51-82. https://doi.org/10.17230/ecos.2013.37.3

Gold, S. (2015). The Viability of six popular technical analysis trading rules in determining effective buy and sell signals: MACD, AROON, RSI, SO, OBV, and ADL. Journal of Applied Financial Research, 2, 8-29.

Henrique, B. M., Sobreiro, V. A., & Kimura, H. (2019). Literature review: machine learning techniques applied to financial market prediction. Expert Systems with Applications, 124, 226-251. https://doi.org/10.1016/j.eswa.2019.01.012

Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press.

Holland, J. H. (1982). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. MIT Press.

Isidore, R., & Christie, P. (2018). Fundamental analysis versus technical analysis-A comparative review. Int J Recent Sci Res, 9(1), 23009-23013. http://dx.doi.org/10.24327/ijrsr.2018.0901.1380

Khan, M. A., Aman, Q., & Khan, N. (2016). Technical analysis: concept or reality?. Pakistan Business Review: 732-751.

Levine, R. (1997). Financial development and economic growth: views and agenda. Journal of Economic Literature, 35(2), 688-726. https://www.jstor.org/stable/2729790

Llorente-López, M. A. (2012). Programación Genética en Mercados Financieros - Construcción automática de reglas de inversión utilizando programación genética [Proyecto final, Universitat Politècnica de Catalunya, UPC]. Repositorio digital. https://upcommons.upc.edu/bitstream/handle/2099.1/14104/77634.pdf?sequence=1&isAllowed=y

Luukka, P., Pätäri, E., John, E., & Garanina, T. (2016). Performance of moving average trading rules in a volatile stock market: The Russian evidence. Emerging Markets Finance & Trade, 52(10), 2434- 2450. https://doi.org/10.1080/1540496X.2015.1087785

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 1952, 77-91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x

Metghalchi, M., Chen, C., & Hayes, L. (2015). History of share prices and market efficiency of the Madrid general stock index. International Review of Financial Analysis, 40, 178-184. https://doi.org/10.1016/j.irfa.2015.05.016

Mohd-Nor, S., & Wickremasinghe, G. (2014). The profitability of MACD and RSI trading rules in the Australian stock market. Investment Management and Financial Innovations, 11(4), 194-199. https://www.businessperspectives.org/images/pdf/applications/publishing/templates/article/assets/6228/imfi_en_2014_04cont_Nor.pdf

Moosa, I., & Li, L. (2011). Technical and fundamental trading in the Chinese stock market: Evidence based on time-series and panel data. Emerging Markets Finance and Trade, 47 (Supplement 1), 23-31. https://doi.org/10.2753/REE1540-496X4701S103

Murphy, J. (1998). Technical analysis of the financial markets: a comprehensive guide to trading methods and applications. Pearson Professional Education.

Murphy, J. (2016). Análisis Técnico de los Mercados Financieros. Editorial Paidós.

Nti, I. K., Adekoya, A. F., & Weyori, B. A. (2020). A systematic review of fundamental and technical analysis of stock market predictions. Artificial Intelligence Review, (53), 3007–3057. https://doi.org/10.1007/s10462-019-09754-z

Papailias, F., & Thomakos, D. D. (2015). An improved moving average technical trading rule. Physica A: Statistical Mechanics and its Applications, 428, 458-469. https://doi.org/10.1016/j.physa.2015.01.088

Petrusheva, N., & Jordanoski, I. (2016). Comparative analysis between fundamental and technical analysis of stocks. Journal of Process Management - New Technologies, International, 4(2), 26-31. https://scindeks-clanci.ceon.rs/data/pdf/2334-735x/2016/2334-735x1602026p.pdf

Radeerom, M. (2014). Automatic trading system based on genetic algorithm and technical analysis for stock index. International Journal of Information Processing and Management (IJIPM), 5(4), 124-132.

Restrepo-Gaviria, A. M. (2015). El sistema financiero y su importancia en el crecimiento económicos. [Tesis de pregrado, Universidad Pontificia Bolivariana]. Repositorio Institucional UPB. http://hdl.handle.net/20.500.11912/2239

Rodrigues-Leles, M. C., Amaral-Mozelli, L., & Nogueira-Guimarães, H. (2017). A new trend-following indicator: Using SSA to design trading rules. Fluctuation and Noise Letters, 16(2), 1-16. https://doi.org/10.1142/S021947751750016X

Rosillo, R., De la Fuente, D., & Burgos, J. A. L. (2013). Technical analysis and the Spanish stock exchange: testing the RSI, MACD, momentum and stochastic rules using Spanish market companies. Applied Economics, 45(12), 1541-1550. https://doi.org/10.1080/00036846.2011.631894

Rosillo, R., Giner, J., & De la Fuente, D. (2014). Stock market simulation using support vector machines. Journal of Forecasting, 33 (6), 488-500. https://doi.org/10.1002/for.2302

Sevilla-Arias, A. (2012). Índice bursátil. https://bit.ly/3u5KvZi

Shangkun, D., Yizhou, S., & Akito, S. (2012). Robustness test of genetic algorithm on generating rules for currency trading, Procedia Computer Science, 13, 86-98. https://doi.org/10.1016/j.procs.2012.09.117

Sharpe, W. F. (1964). Capital asset prices: a theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425–442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x

Straßburg, J., Gonzàlez-Martel, C., & Alexandrov, V. (2012). Parallel genetic algorithms for stock market trading rules. Procedia Computer Science, 9, 1306-1313. https://doi.org/10.1016/j.procs.2012.04.143

Suresh, A. S. (2013). A study of fundamental and technical analysis. International Journal of Marketing, Financial Services & Management Research. 2(5), 44-59.

Swain, K.R. (2012). Book Review: Technical Analysis Ideal for Beginners. Asia-Pacific Journal of Management Research and Innovation, 8(4), 537-538. https://doi.org/10.1177%2F2319510X13482021

Taylor, N. (2014). The rise and fall of technical trading rule success. Journal of Banking & Finance, 40, 286-302. https://doi.org/10.1016/j.jbankfin.2013.12.004

Tharavanij, P., Siraprapasiri, V., & Rajchamaha, K. (2015). Performance of technical trading rules. SpringerPlus, 4(1). 1-40. https://doi.org/10.1186/s40064-015-1334-7

Vora, M. N. (2011). Genetic algorithm for trading signal generation. Solution to trader’s dilemma: Is it right time to trade?. International Conference on Business and Economics Research, 1, 316-320. http://ipedr.com/vol1/68-G00012.pdf

Wang, C.-F., Liu, K., Shen, P.-P. (2020) A novel genetic algorithm for global optimization. Acta Mathematicae Applicatae Sinica, English Series, 36(2), 482-491.https://doi.org/10.1007/s10255-020-0930-7

Wang, L., An, H., Liu, X. & Huang, X. (2016). Selecting dynamic moving average trading rules in the crude oil futures market using a genetic approach. Applied Energy, 162, 1608-1618. https://doi.org/10.1016/j.apenergy.2015.08.132

Wilder, J. W. (1978). New concepts in technical trading systems. Trend Research.

Zapranis, A., & Tsinaslanidis, P. E. (2012). A novel, rule-based technical pattern identification mechanism: Identifying and evaluating saucers and resistant levels in the US stock market. Expert System with Applications, 39(7), 6301-6308. https://doi.org/10.1016/j.eswa.2011.11.079