Análisis de determinantes y gestión de riesgos en crowdfunding de préstamos entre pares

##plugins.themes.themeTen.article.main##

Rosa Emilia Fajardo-Cortes https://orcid.org/0000-0002-6301-4472
Jaime Andrés Vieira-Salazar https://orcid.org/0000-0003-2678-4440

Keywords

Gestión de riesgos, instituciones financieras, inversionista, financiación, mercado financiero, prestatarios, riesgo crediticio

Resumen

El objetivo de este estudio fue analizar la tendencia en investigación sobre los determinantes y gestión de riesgos en crowdfunding de préstamos P2P, con el fin de ampliar el conocimiento a inversionistas, empresarios y formuladores de políticas sobre esta financiación disruptiva. Se utilizó un enfoque cualitativo con descripción de publicaciones enfocadas al riesgo crediticio. Seguidamente, se realizó un análisis bibliométrico de la producción científica en las bases de datos: WOS y Scopus. El análisis bibliométrico se realizó con las plataformas VOSviewer y RStudio (librerías Bibliometrix y Biblioshiny), en el que se identificaron cuatro clústeres temáticos actuales de investigación que enfocan la producción de conocimiento. A partir del análisis descriptivo se realizó una aproximación teórica con los hallazgos más relevantes. Este estudio concluye que el crowdfunding de préstamos P2P es emergente en Latinoamérica y requiere atención en el riesgo crediticio presente en los prestatarios y en la plataforma en línea, con factores que limitan al inversionista en la identificación de riesgos e interpretación de modelos que los predicen y evalúan, lo cual los expone a altas probabilidades de incumplimiento de pago por parte de los prestatarios. Por ende, es necesario fortalecer la normatividad en el contexto de los países donde se desarrolla, a fin de generar credibilidad y confianza en este mercado disruptivo.

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 1032 | PDF Downloads 382

Citas

Aria, M. & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Bao, T., Ding, Y., & Gopal, R. (2023). Throwing Good Money After Bad: Risk Mitigation Strategies in the P2P Lending Platforms. Inf Syst Front, 25(3), 1-21. https://doi.org/10.1007/s10796-023-10423-4

Basha, S., Elgammal, M. & Abuzayed, B. (2021). Online peer-to-peer lending: A review of the literature. Electronic Commerce Research and Applications, 48. https://doi.org/10.1016/j.elerap.2021.101069

Belleflamme, P., Lambert, T., & Schwienbacher, A. (2014). Crowdfunding: Tapping the right crowd. Journal of Business Venturing, 29(5), 585-609. https://doi.org/10.1016/j.jbusvent.2013.07.003

Beresford, B., & Thompson, C. J. (2007). Managing credit risk with info-gap uncertainty. The Journal of Risk Finance, 8, 24–34. https://doi.org/10.1108/15265940710721055

Bollaert, H., Lopez-de-Silanes, F. & Schwienbacher, A. (2021). Fintech and access to finance. Journal of Corporate Finance, (68), 2-14. https://doi.org/10.1016/j.jcorpfin.2021.101941

Boiko, L., Barddal, J., Gomes, H. & Enembreck, F. (2017). Improving Credit Risk Prediction in Online Peer-to-Peer (P2P) Lending Using Imbalanced Learning Techniques. IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), 175-181. https://doi.org/10.1109/ICTAI.2017.00037

Byanjankar, A., Heikkila, M. & Mezei, J. (2015). Predicting Credit Risk in Peer-to-Peer Lending: A Neural Network Approach. Work presented in 2015 IEEE Symposium Series on Computational Intelligence. https://doi.org/10.1109/ssci.2015.109

Byanjankar, A. (2018). Predicting credit risk in Peer-to-Peer lending with survival analysis. IEEE Symposium Series on Computational Intelligence, SSCI 2017, 1-8. https://doi.org/10.1109/SSCI.2017.8280927

Chen, J., Chen, L., Qian, C., & Xie, K. (2018). Decision making in crowdfunding under risk analysis. In Proceedings of the 51st Hawaii International Conference on System Sciences, 1463–1472. https://doi.org/10.24251/HICSS.2018.182.

Chen, S., Gu, Y., Liu, Q. & Tse, Y. (2020). How do lenders evaluate borrowers in peer-to-peer lending in China? International Review of Economics & Finance, 69, 651-662. https://doi.org/10.1016/j.iref.2020.06.038

Cheng, H., & Guo, R. (2020). Risk Preference of the Investors and the Risk of Peer-to-Peer Lending Platform. Emerging Markets Finance and Trade 56(7), 1520-1531. https://doi.org/10.1080/1540496X.2019.1574223

Chengguo, Z., Meng, L., Jun, W., & Shujian, M. (2021). The mechanism of credit risk contagion among internet P2P lending platforms based on a SEIR model with time-lag. Research in International Business and Finance, 57, 101-407. https://doi.org/10.1016/j.ribaf.2021.101407

Damilano, M., De Vincentiis, P., Isaia, E., Pia, P. & Rovera, C. (2019). Risk Management Instruments Offered by P2P Lending Platforms. A Cross-Country Empirical Analysis Based on a Scoring System. The Future of Risk Management, 2, 3–42. https://doi.org/10.1007/978-3-030-16526-0_1

Dimitropoulos, P. E. (2022). A Review of Internet Financing Through Peer-to-Peer Lending: A Cross-Country Comparative Analysis. Business Advancement through Technology Volume I. Palgrave Studies in Cross-disciplinary Business Research, In Association with EuroMed Academy of Business. https://doi.org/10.1007/978-3-031-07769-2_4

Duarte, J., Siegel, S. & Young, L. (2012). Trust and Credit: The Role of Appearance in Peer-to-peer lending. The Review of Financial Studies, 25(8), 2455–2484. https://doi.org/10.1093/rfs/hhs071

Dömötör, B., Illés, F. & Tímea Ölvedi. (2023). Peer-to-peer lending: Legal loan sharking or altruistic investment? Analyzing platform investments from a credit risk perspective. Journal of International Financial Markets, Institutions and Money, 86, 1-17. https://doi.org/10.1016/j.intfin.2023.101801

Eldridge, D., Nisar, M. & Torchia, M. (2021). What impact does equity crowdfunding have on SME innovation and growth? An empirical study. Small Bus Econ, 56, 105–120. https://doi.org/10.1007/s11187-019-00210-4

Emekter, R., Tu, Y., Jirasakuldech, B & Lu, M. (2015). Evaluating credit risk and loan performance in online Peer-to-Peer (P2P) lending. Applied Economics, 47(1), 54-70. https://doi.org/10.1080/00036846.2014.962222

Ferrari, R. (2015). Writing narrative style literature reviews. Medical Writing, 24(4), 230-235. https://doi.org/10.1179/2047480615Z.000000000329

Ferretti, F. (2021). Peer-to-Peer lending and EU credit laws: A creditworthiness assessment, credit-risk analysis or neither of the two? German Law Journal, 22(1), 102-121. https://doi.org/10.1017/glj.2020.100

Geng, C., Xu, K. & Wei, X. (2022). Driving factors of capital allocation efficiency in the artificial intelligence industry in China– the perspective of a financing ecosystem, Asia-Pacific. Journal of Accounting & Economics, 30(5), 1246-1263. https://doi.org/10.1080/16081625.2022.2054832

Gomber, P., Kauffman, R., Parker, C. & Weber, B. (2018). On the Fintech Revolution: Interpreting the Forces of Innovation, Disruption, and Transformation in Financial Services. Journal of Management Information Systems, 35(1), 220–265. https://doi.org/10.1080/07421222.2018.1440766

González, L. (2020). Blockchain, herding and trust in peer-to-peer lending. Managerial Finance, 46(6), 815-831. https://doi.org/10.1108/MF-09-2018-0423

Guo, H., Peng, K., Xu, X., Tao, S. & Wu, Z. (2020). The prediction analysis of peer-to-peer lending platforms default risk based on comparative models. Scientific Programming (2020), 2-10. https://doi.org/10.1155/2020/8816419

Guo, Y. (2020). Credit risk assessment of P2P lending platform towards big data based on BP neural network. Journal of Visual Communication and Image Representation, 71, 1-5. https://doi.org/10.1016/j.jvcir.2019.102730

Guo, Y., Zhou, W., Luo, C., Liu, C. & Xiong, H. (2016). Instance-based credit risk assessment for investment decisions in P2P lending. European Journal of Operational Research, 249(2), 417-426. https://doi.org/10.1016/j.ejor.2015.05.050

Ha, V., Lu, D., Choi, G., Nguyen, H. & Yoon, B. (2019). Improving Credit Risk Prediction in Online Peer-to-Peer (P2P) Lending Using Feature selection with Deep learning. 21st International Conference on Advanced Communication Technology (ICACT), 511-515. https://doi.org/10.23919/ICACT.2019.8701943

He, F., Li, Y., Xu, T., Zhang, W. & Zhang, X. (2020). A Data-Analytics Approach for Risk Evaluation in Peer-to-Peer Lending Platforms. IEEE Intelligent Systems, 35(3), 85-95. https://doi.org/10.1109/MIS.2020.2971946

Heenkenda, H., Xu, F., Kulathunga, K. & Senevirathne, W. (2022). The Role of Innovation Capability in Enhancing Sustainability in SMEs: An Emerging Economy Perspective. Sustainability, 14(17), 2-22- https://doi.org/10.3390/su141710832

Herzenstein, M., Dholakia, U. & Andrews, R. (2011). Strategic Herding Behavior in Peer-to-Peer Loan Auctions. Journal of Interactive Marketing, 25(1),27-36. https://doi.org/10.1016/j.intmar.2010.07.001.

Haroon, U., Shariff, M. & Yusof, M.S. (2019). Exploring the Relationship Between Innovation Capability, Total Quality Management and SMEs Performance in Electric Fan Industry of Pakistan: Moderating Effect of Relational Learning. International Journal of Financial Research, 10(3), 353-359. https://doi.org/10.5430/ijfr.v10n3p353

Ji, X., Yu, L., & Fu, J. (2020). Evaluating Personal Default Risk in P2P Lending Platform: Based on Dual Hesitant Pythagorean Fuzzy TODIM Approach. Mathematics, 8(8). https://doi.org/10.3390/math8010008

Jiang, C., Xu, Q., Zhang W. & Li, M. (2018). Does automatic bidding mechanism affect herding behavior? Evidence from online P2P lending in China. Journal of Behavioral and Experimental Finance, 20(3). https://doi.org/10.1016/j.jbef.2018.07.001

Juntunen, M., & Lehenkari, M. (2021). A narrative literature review process for an academic business research thesis. Studies in Higher Education, 46(2), 330–342. https://doi.org/10.1080/03075079.2019.1630813

Käfer, B. (2018). Peer-to-Peer Lending - A(Financial Stability) Risk Perspective. Review of Economics, 69(1), 27-42. https://doi.org/10.1515/roe-2017-0020.

Kun, L. (2020). Analyzing credit risk among Chinese P2P-lending businesses by integrating text-related soft information. Electronic Commerce Research and Applications, 40, 2-14. https://doi.org/10.1016/j.elerap.2020.100947

Lenz, R. (2016). Peer-to-Peer Lending: Opportunities and Risks. European Journal of Risk Regulation, 7(4), 688-700.
http://doi.org/10.1017/S1867299X00010126

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J. & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Journal of Clinical Epidemiology, 62(10), 1-34. https://doi.org/10.1016/j.jclinepi.2009.06.006

Li, J. & Hu, J. (2019). Does university reputation matter? Evidence from peer-to-peer lending. Finance Research Letters, 31, 66-77. https://doi.org/10.1016/j.frl.2019.04.004.

Li, L., Feng, Y., Lv, Y., Fu, X. & Qi, J. (2019). Automatically Detecting Peer-to-Peer Lending Intermediary Risk-Top Management Team Profile Textual Features Perspective. IEEE Access, 7, 72551-72560. https://doi.org/10.1109/ACCESS.2019.2919727

Li, Q., Chen, L. & Zeng, Y. (2018). The mechanism and effectiveness of credit scoring of P2P lending platform. China Finance Review International, 8(3), 256-274. https://doi.org/10.1108/CFRI-06-2017-0156

Liu, H., Qiao, H., Wang, s. & Li, Y. (2019). Platform Competition in Peer-to-Peer Lending Considering Risk Control Ability. European Journal of Operational Research, 274(1), 280-290. https://doi.org/10.1016/j.ejor.2018.09.024

Liu, Y., Zhou, Q., Zhao, X. & Wang, Y. (2018). Can Listing Information Indicate Borrower Credit Risk in Online Peer-to-Peer Lending? Emerging Markets Finance and Trade, 54(13), 2982-2994. https://doi.org/10.1080/1540496X.2018.1427061

Ma, Z., Hou, W. & Zhang, D. (2021). A credit risk assessment model of borrowers in P2P lending based on BP neural network. PLoS ONE 16(8), 1-21. https://doi.org/10.1371/journal.pone.0255216

Miglietta, N., Battisti, E., & Graziano, E. (2019). Equity Crowdfunding and Risk Management: The Attitude of Italian Platforms. The Future of Risk Management, 2, 43–66. https://doi.org/10.1007/978-3-030-16526-0_2

Miglo, A. (2022). Theories of Crowdfunding and Token Issues: A Review. Journal of Risk and Financial Management, 15(5), 218. https://doi.org/10.3390/jrfm15050218

Mina, A., Minin, A., Martelli, I., Testa, G. & Santoleri, P. (2021). Public funding of innovation: Exploring applications and allocations of the European SME Instrument. Research Policy, 50(1), 2-12. https://doi.org/10.1016/j.respol.2020.104131

Mollick, E. (2014). The dynamics of crowdfunding: An exploratory study. Journal of Business Venturing, 29(1), 1-16. https://doi.org/10.1016/j.jbusvent.2013.06.005

Nisar, T.M., Prabhakar, G. & Torchia, M. (2020). Crowdfunding innovations in emerging economies: Risk and credit control in peer-to-peer lending network platforms. Strategic Change, 29(3), 355-361. https://doi.org/10.1002/jsc.2334

Niu, K., Zhangb, Z., Liu, Y. & Li, R. (2020). Resampling ensemble model based on data distribution for imbalanced credit risk evaluation in P2P lending. Information Sciences, 536, 120-134. https://doi.org/10.1016/j.ins.2020.05.040

Nigmonov, A., Shams, S. & Alam, K. (2022). Macroeconomic determinants of loan defaults: Evidence from the U.S. peer-to-peer lending market. Research in International Business and Finance, 59, 101-516. https://doi.org/10.1016/j.ribaf.2021.101516

Oudgou, M. (2021). Financial and non-financial obstacles to innovation: Empirical evidence at the firm level in the MENA region. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 1-18. https://doi.org/10.3390/joitmc7010028

Papoušková, M. & Hajek, P. (2019). Modelling loss given default in peer-to-peer lending using random forests. Smart Innovation, Systems and Technologies, 142, 133-141. https://doi.org/10.1007/978-981-13-8311-3_12

Polena, M. & Regner, T. (2018). Determinants of Borrowers Default in P2P Lending under Consideration of the Loan Risk Class. Games, 9(4):82. https://doi.org/10.3390/g9040082

Pope, D. & Sydnor, J. (2011). What's in a Picture?: Evidence of Discrimination from Prosper.com. Journal of Human Resources, 46(1), 53-92. https://doi.org/10.1353/jhr.2011.0025

Qamruzzaman, M. & Jianguo, W. (2019). SME financing innovation and SME development in Bangladesh: an application of ARDL. Journal of Small Business & Entrepreneurship, 31(6), 521-545. https://doi.org/10.1080/08276331.2018.1468975

Qiang, G., Chong, L., Peng, Q. & Luying, W. (2020). Will CEOs with banking experience lower default risks? Evidence from P2P lending platforms in China. Finance Research Letters, 36, 2-5. https://doi.org/10.1016/j.frl.2020.101461

Rao, P., Kumar, S., Chavan, M. & Lim, W. (2021). A systematic literature review on SME financing: Trends and future directions. Journal of Small Business Management, 61(3), 1247-1277. https://doi.org/10.1080/00472778.2021.1955123

Schwienbacher, A. & Larralde, B. (2010). Crowdfunding of Small Entrepreneurial Ventures. The Oxford Handbook of Entrepreneurial Finance. https://doi.org/10.2139/ssrn.1699183

Serrano-Cinca, C. & Gutiérrez-Nieto, B. (2016). The use of profit scoring as an alternative to credit scoring systems in peer-to-peer (P2P) lending. Decision Support Systems, 89, 113-122. https://doi.org/10.1016/j.dss.2016.06.014

Song, Y., Wang, Y., Ye, X., Wang, D., Yin, Y. & Wang, Y. (2020). Multi-view ensemble learning based on distance-to-model and adaptive clustering for imbalanced credit risk assessment in P2P lending. Information Sciences, 125, 182-204. https://doi.org/10.1016/j.ins.2020.03.027

Stiglitz, J. E. (2000). The contributions of the economics of information to twentieth century economics. The Quarterly Journal of Economics, 115(4), 1441-1478. https://www.jstor.org/stable/2586930.

Sulastri, R. & Janssen, M. (2022). The elements of the Peer-to-peer (P2P) lending system A Systematic Literature Review. In Conference proceedings, 424-431. https://doi.org/10.1145/3560107.3560172

Suryono, R., Purwandari, B. & Budi, I. (2019). Peer to Peer (P2P) Lending Problems and Potential Solutions: A Systematic Literature Review. Procedia Computer Science, 161, 204-214. https://doi.org/10.1016/j.procs.2019.11.116

Tu, M. & Zhong, F. (2022). Research on Risk Assessment Model of P2P Lending Network Platform. Work presented in the International Conference on Computation, Big-Data and Engineering (ICCBE). https://doi.org/10.1109/ICCBE56101.2022.9888160

Usman, S., Shah, F., Usman, M., Badulescu, D. & Safdar, M. (2019). Does the Role of Media and Founder’s Past Success Mitigate the Problem of Information Asymmetry? Evidence from a UK Crowdfunding Platform. Sustainability , 11(3), 692. https://doi.org/10.3390/su11030692

Wang, L. & Huazhi, L. (2018). Financing of small and medium enterprises based on internet finance. Materials Science and Engineering, 394, 1–5. https://doi.org/10.1088/1757-899X/394/5/052015

Wang, Z., Jiang, C., Zhao, H. & Ding, Y. (2020). Mining Semantic Soft Factors for Credit Risk Evaluation in Peer-to-Peer Lending. Journal of Management Information Systems, 37(1), 282-308. https://doi.org/10.1080/07421222.2019.1705513

Wang, N., Liang, H., Xue, Y. & Ge, S. (2021). Mitigating Information Asymmetry to Achieve Crowdfunding Success: Signaling and Online Communication. Journal of the Association for Information Systems, 22(3), 773-796. https://doi.org/10.17705/1jais.00679

Wesley, H., & Wonglimpiyarat, J. (2020). Dynamics of crowdfunding and FinTech challenges. International Journal of Business Innovation and Research (IJBIR), 23(4), 501-514. https://doi.org/10.1504/IJBIR.2020.111762

Wilson, N., Wright, M., & Kacer, M. (2018). The equity gap and knowledge-based firms. Journal of Corporate Finance, 50, 626–649. https://doi.org/10.1016/j.jcorpfin.2017.12.008

Xia, X. & Gan, L. (2020). SME financing with new credit guarantee contracts over the business cycle. International Review of Economics & Finance, (69), 515-538. https://doi.org/10.1016/j.iref.2020.04.015

Xia, P., Ni, Z., Zhu, X., Zhang, J. & Jin, Y. (2020). A Novel Prediction Method Based on Improved Binary Glowworm Swarm Optimization and Multi-Fractal Dimension for P2P Lending Investment Risk, in IEEE Access, 8, 23232-23245.
https://doi.org/10.1109/ACCESS.2020.2970482.

Xiang, D., Zhang, Y. & Worthington, A. (2018). Determinants of the Use of Fintech Finance Among Chinese Small and Medium-Sized Enterprises. IEEE International Symposium on Innovation and Entrepreneurship (TEMS-ISIE). 1-10. https://doi.org/10.1109/TEMS-ISIE.2018.8478470

Xu, B., Su, Z. & Celler, J. (2021). Evaluating Default Risk and Loan Performance in UK Peer-to-Peer Lending: Evidence from Funding Circle. Journal of Advanced Computational Intelligence and Intelligent Informatics, 25(5), 530-538. https://doi.org/10.20965/jaciii.2021.p0530

Yuan, Z., Wang, Z. & Xu, H. (2018). Credit risk assessment of peer-to-peer lending borrower utilizing BP neural network. Lecture Notes on Data Engineering and Communications Technologies, 6, 22-33. https://doi.org/10.1007/978-3-319-59463-7_3

Yoon, Y. & Feng, Y. (2019). Factors affecting platform default risk in online peer to peer (P2P) lending business: an empirical study using Chinese online P2P platform data. Electron Commer Res, 19, 131-158. https://doi.org/10.1007/s10660-018-9291-1

Zhang, W., Zhao, Y. & Wang, P. (2020). Investor Sentiment and the Return Rate of P2P Lending Platform. Asia-Pac Financ Markets, 27, 97–113. https://doi.org/10.1007/s10690-019-09284-2

Zhao, H., Ge, Y., Liu, Q., Wang, G., Chen, E. & Zhang, H. (2017). Authors Info & Claims ACM. Transactions on Intelligent Systems and Technology, 8(6), 1–28. https://doi.org/10.1145/3078848

Zhou, L., Fujita, H., Ding, H. & Ma, R. (2021). Credit risk modeling on data with two timestamps in peer-to-peer lending by gradient boosting. Applied Soft Computing, 110, 3-12. https://doi.org/10.1016/j.asoc.2021.107672