Location criteria for computational intelligence algorithms in the web of things: a systematic literature review

Share:

Abstract

Objective: Determine and characterize the current state of the knowledge about the location criteria of data processing, using computational intelligence techniques in an Intelligent Objects Ecosystem of Web of Things. Methodology: The systematic review presented below is based on the studies carried out by Petersen and Kitchenham, four research questions were proposed, the PICOC method was applied to identify the keywords, a search chain and four search engines were proposed, the inclusion and exclusion criteria of primary studies were proposed, as well as the quality evaluation criteria, the data extraction strategy and the synthesis method. Results: It was possible to answer the four research questions proposed, finding that most of the studies lack an implementation in the three analyzed locations and a single study compares the performance obtained by a computational intelligence algorithm when processing information in different locations of the ecosystem. Conclusions: The need to continue carrying out studies in the area of the localization of processing in intelligent ecosystems was demonstrated using computational intelligence techniques for processing in different locations. In addition, there is evidence of a need to place greater emphasis on comparing the performance obtained when carrying out implementations taking into account different computational intelligence techniques.

References

[1] P. Sethi and S. R. Sarangi, “Internet of Things: Architectures, Protocols, and Applications,” J. Electr. Comput. Eng., vol. 2017, p. 9324035, 2017, doi: 10.1155/2017/9324035.

[2] G. Bai, L. Yan, L. Gu, Y. Guo, and X. Chen, “Context-aware usage control for web of things,” Secur. Commun. Networks, vol. 7, no. 12, pp. 2696–2712, 2014, doi: 10.1002/sec.424.

[3] A. Wagner, J. L. V. Barbosa, and D. N. F. Barbosa, “A model for profile management applied to ubiquitous learning environments,” Expert Syst. Appl., vol. 41, no. 4 PART 2, pp. 2023–2034, Mar. 2014, doi: 10.1016/j.eswa.2013.08.098.

[4] L. Yao, “A Propagation Model for Integrating Web of Things and Social Networks,” in Service-Oriented Computing - ICSOC 2011 Workshops, 2012, pp. 233–238.

[5] P. Pedamkar, “IoT Ecosystem,” 2020. https://www.educba.com/iot-ecosystem/ (accessed May 26, 2021).

[6] M. Niño Zambrano, “Interacción Semántica de Objetos en la Web de las Cosas,” 2013.

[7] B. Varghese and R. Buyya, “Next generation cloud computing: New trends and research directions,” Futur. Gener. Comput. Syst., vol. 79, pp. 849–861, Feb. 2018, doi: 10.1016/j.future.2017.09.020.

[8] A. Jaddoa, G. Sakellari, E. Panaousis, G. Loukas, and P. G. Sarigiannidis, “Dynamic decision support for resource offloading in heterogeneous Internet of Things environments,” Simul. Model. Pract. Theory, vol. 101, p. 102019, May 2020, doi: 10.1016/J.SIMPAT.2019.102019.

[9] B. Alturki, S. Reiff-Marganiec, C. Perera, and S. De, “Exploring the Effectiveness of Service Decomposition in Fog Computing Architecture for the Internet of Things,” IEEE Trans. Sustain. Comput., p. 1, 2019, doi: 10.1109/TSUSC.2019.2907405.

[10] G. M. S. Rahman, M. Peng, S. Yan, and T. Dang, “Learning Based Joint Cache and Power Allocation in Fog Radio Access Networks,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 4401–4411, Apr. 2020, doi: 10.1109/TVT.2020.2975849.

[11] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile Edge Computing: A Survey,” IEEE Internet of Things Journal, vol. 5, no. 1. Institute of Electrical and Electronics Engineers Inc., pp. 450–465, Feb. 2018, doi: 10.1109/JIOT.2017.2750180.

[12] Z. Mahmood and M. Ramachandran, “Fog Computing: Concepts, Principles and Related Paradigms,” in Fog Computing: Concepts, Frameworks and Technologies, Z. Mahmood, Ed. Cham: Springer International Publishing, 2018, pp. 3–21.

[13] C. Mechalikh, H. Taktak, and F. Moussa, “A scalable and adaptive tasks orchestration platform for IoT,” in 2019 15th International Wireless Communications and Mobile Computing Conference, IWCMC 2019, Jun. 2019, pp. 1557–1563, doi: 10.1109/IWCMC.2019.8766744.

[14] B. Rababah, T. Alam, and R. Eskicioglu, “The Next Generation Internet of Things Architecture Towards Distributed Intelligence: Reviews, Applications, and Research Challenges,” SSRN Electron. J., Jul. 2020, doi: 10.2139/ssrn.3640136.

[15] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing for IoT: Review, enabling technologies, and research opportunities,” Futur. Gener. Comput. Syst., vol. 87, pp. 278–289, Oct. 2018, doi: 10.1016/J.FUTURE.2018.04.057.

[16] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic mapping studies in software engineering: An update,” in Information and Software Technology, 2015, vol. 64, pp. 1–18, doi: 10.1016/j.infsof.2015.03.007.

[17] K. BA and S. Charters, “Guidelines for performing Systematic Literature Reviews in Software Engineering,” vol. 2, 2007.

[18] Y. Meng, M. Naeem, A. Almagrabi, R. Ali, and H. S. Kim, “Advancing the State of the Fog Computing to Enable 5G Network Technologies,” Sensors, vol. 20, p. 1754, 2020, doi: 10.3390/s20061754.

[19] S. E. Bibri, “A foundational framework for smart sustainable city development: Theoretical, disciplinary, and discursive dimensions and their synergies,” Sustain. Cities Soc., vol. 38, pp. 758–794, Apr. 2018, doi: 10.1016/J.SCS.2017.12.032.

[20] P. Fountas and K. Kolomvatsos, “Ensemble based Data Imputation at the Edge,” in 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), 2020, pp. 961–968, doi: 10.1109/ICTAI50040.2020.00150.

[21] T. S. J. Darwish and K. Abu Bakar, “Fog Based Intelligent Transportation Big Data Analytics in The Internet of Vehicles Environment: Motivations, Architecture, Challenges, and Critical Issues,” IEEE Access, vol. 6, pp. 15679–15701, Mar. 2018, doi: 10.1109/ACCESS.2018.2815989.

[22] J. Schmitt, J. Bönig, T. Borggräfe, G. Beitinger, and J. Deuse, “Predictive model-based quality inspection using Machine Learning and Edge Cloud Computing,” Adv. Eng. Informatics, vol. 45, p. 101101, Aug. 2020, doi: 10.1016/J.AEI.2020.101101.

[23] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb, “Survey on Multi-Access Edge Computing for Internet of Things Realization,” IEEE Commun. Surv. Tutorials, vol. 20, no. 4, pp. 2961–2991, Oct. 2018, doi: 10.1109/COMST.2018.2849509.

[24] M. Tahir, Q. Mamoon Ashraf, and M. Dabbagh, “Towards Enabling Autonomic Computing in IoT Ecosystem,” in 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 2019, pp. 646–651, doi: 10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00122.

[25] J. Mocnej, W. K. G. Seah, A. Pekar, and I. Zolotova, “Decentralised IoT Architecture for Efficient Resources Utilisation,” IFAC-PapersOnLine, vol. 51, no. 6, pp. 168–173, Jan. 2018, doi: 10.1016/J.IFACOL.2018.07.148.

[26] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra, “Edge cloud offloading algorithms: Issues, methods, and perspectives,” ACM Comput. Surv., vol. 52, no. 1, p. 23, Feb. 2019, doi: 10.1145/3284387.

[27] H. Liao et al., “Learning-Based Context-Aware Resource Allocation for Edge-Computing-Empowered Industrial IoT,” IEEE Internet Things J., vol. 7, no. 5, pp. 4260–4277, May 2020, doi: 10.1109/JIOT.2019.2963371.

[28] M. Silva et al., “Neighborhood-aware Mobile Hub: An Edge Gateway with Leader Election Mechanism for Internet of Mobile Things,” Mob. Networks Appl. 2020, pp. 1–14, Sep. 2020, doi: 10.1007/S11036-020-01630-3.

[29] J. Zhang, M. Ma, W. He, and P. Wang, “On-demand deployment for IoT applications,” J. Syst. Archit., vol. 111, p. 101794, Dec. 2020, doi: 10.1016/J.SYSARC.2020.101794.

[30] D. Amiri et al., “Optimizing Energy Efficiency of Wearable Sensors Using Fog-assisted Control,” Fog Comput. Theory Pract., pp. 245–268, Apr. 2020, doi: 10.1002/9781119551713.CH9.

[31] J. I. Benedetto, L. A. González, P. Sanabria, A. Neyem, and J. Navón, “Towards a practical framework for code offloading in the Internet of Things,” Futur. Gener. Comput. Syst., vol. 92, pp. 424–437, Mar. 2019, doi: 10.1016/J.FUTURE.2018.09.056.

[32] J. Zhang, P. Liu, F. Zhang, H. Iwabuchi, A. A. D. H. E. A. De Moura, and V. H. C. De Albuquerque, “Ensemble Meteorological Cloud Classification Meets Internet of Dependable and Controllable Things,” IEEE Internet Things J., vol. 8, no. 5, pp. 3323–3330, Mar. 2021, doi: 10.1109/JIOT.2020.3043289.

[33] W. Sun, J. Liu, and Y. Yue, “AI-enhanced offloading in edge computing: When machine learning meets industrial IoT,” IEEE Netw., vol. 33, no. 5, pp. 68–74, Sep. 2019, doi: 10.1109/MNET.001.1800510.

[34] A. S. Gowri and P. Shanth I Bala, “An agent based resource provision for IoT through machine learning in Fog computing,” 2019 IEEE Int. Conf. Syst. Comput. Autom. Networking, ICSCAN 2019, Mar. 2019, doi: 10.1109/ICSCAN.2019.8878821.

[35] D. Digitalcommons@uri and N. Constant, “An Intelligent Fog Centric Network for IoT-Driven Smart Communities,” Open Access Master’s Theses, Jan. 2017, doi: 10.23860/thesis-constant-nicholas-2017.

[36] F. F. Borelli, G. Biondi, F. Horita, and C. Kamienski, “Architectural Software Patterns for the Development of IoT Smart Applications,” Mar. 2020, Accessed: Nov. 11, 2021. [Online]. Available: https://arxiv.org/abs/2003.04781v2.

[37] L. A. Steffenel, M. Kirsch Pinheiro, and C. Souveyet, “Assessing the impact of unbalanced resources and communications in edge computing,” Pervasive Mob. Comput., vol. 71, p. 101321, Feb. 2021, doi: 10.1016/J.PMCJ.2020.101321.

[38] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality of Experience (QoE)-aware placement of applications in Fog computing environments,” J. Parallel Distrib. Comput., vol. 132, pp. 190–203, Oct. 2019, doi: 10.1016/J.JPDC.2018.03.004.

[39] J. Mocnej et al., “Quality-enabled decentralized IoT architecture with efficient resources utilization,” Robot. Comput. Integr. Manuf., vol. 67, p. 102001, Feb. 2021, doi: 10.1016/J.RCIM.2020.102001.

[40] G. Carvalho, B. Cabral, V. Pereira, and J. Bernardino, “Computation offloading in Edge Computing environments using Artificial Intelligence techniques,” Eng. Appl. Artif. Intell., vol. 95, p. 103840, Oct. 2020, doi: 10.1016/J.ENGAPPAI.2020.103840.

[41] J. Queiroz, P. Leitão, J. Barbosa, and E. Oliveira, “Distributing intelligence among cloud, fog and edge in industrial cyber-physical systems,” 16th Int. Conf. Informatics Control. Autom. Robot. ICINCO 2019, vol. 1, pp. 447–454, 2019, doi: 10.5220/0007979404470454.

[42] E. Peltonen, T. Leppänen, and L. Lovén, “EdgeAI: Edge-native Distributed Platform for Artificial Intelligence,” 2019.

[43] M. García-Valls, A. Dubey, and V. Botti, “Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies and Challenges,” J. Syst. Archit., vol. 91, pp. 83–102, Nov. 2018, doi: 10.1016/J.SYSARC.2018.05.007.

[44] H. Bangui, S. Rakrak, S. Raghay, and B. Buhnova, “Moving to the Edge-Cloud-of-Things: Recent Advances and Future Research Directions,” Electron. 2018, Vol. 7, Page 309, vol. 7, no. 11, p. 309, Nov. 2018, doi: 10.3390/ELECTRONICS7110309.

[45] J. Edinger, “Context-aware task scheduling in distributed computing systems,” 2019, Accessed: Nov. 11, 2021. [Online]. Available: https://madoc.bib.uni-mannheim.de/51051.

[46] D. Schäfer, “Elastic computation placement in edge-based environments,” 2019, Accessed: Apr. 17, 2021. [Online]. Available: https://madoc.bib.uni-mannheim.de/48832.

[47] R. B. Almeida et al., “A distributed event-driven architectural model based on situational awareness applied on internet of things,” Inf. Softw. Technol., vol. 111, pp. 144–158, Jul. 2019, doi: 10.1016/j.infsof.2019.04.001.

[48] C. Mechalikh, H. Taktak, and F. Moussa, “A Scalable and Adaptive Tasks Orchestration Platform for IoT,” in 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC), 2019, pp. 1557–1563, doi: 10.1109/IWCMC.2019.8766744.

[49] T. Zhang, Z. Shen, J. Jin, X. Zheng, A. Tagami, and X. Cao, “Achieving Democracy in Edge Intelligence: A Fog-Based Collaborative Learning Scheme,” IEEE Internet Things J., vol. 8, no. 4, pp. 2751–2761, Feb. 2021, doi: 10.1109/JIOT.2020.3020911.

[50] W. Yanez, R. Mahmud, R. Bahsoon, Y. Zhang, and R. Buyya, “Data Allocation Mechanism for Internet-of-Things Systems With Blockchain,” IEEE Internet Things J., vol. 7, no. 4, pp. 3509–3522, Apr. 2020, doi: 10.1109/JIOT.2020.2972776.

[51] R. I. Ciobanu, C. Negru, F. Pop, C. Dobre, C. X. Mavromoustakis, and G. Mastorakis, “Drop computing: Ad-hoc dynamic collaborative computing,” Futur. Gener. Comput. Syst., vol. 92, pp. 889–899, Mar. 2019, doi: 10.1016/j.future.2017.11.044.

[52] T. Leppänen and J. Riekki, “Energy Efficient Opportunistic Edge Computing for the Internet of Things,” Web Intell. Agent Syst., vol. 17, 2018, doi: 10.3233/WEB-190414.

[53] R. Calegari, G. Ciatto, E. Denti, and A. Omicini, “Engineering Micro-intelligence at the Edge of CPCS: Design Guidelines,” 2019, pp. 260–270.

[54] L. U. Khan et al., “Federated Learning for Edge Networks: Resource Optimization and Incentive Mechanism,” IEEE Commun. Mag., vol. 58, no. 10, pp. 88–93, Oct. 2020, doi: 10.1109/MCOM.001.1900649.

[55] Z. Lv, D. Chen, R. Lou, and Q. Wang, “Intelligent edge computing based on machine learning for smart city,” Futur. Gener. Comput. Syst., vol. 115, pp. 90–99, Feb. 2021, doi: 10.1016/j.future.2020.08.037.

[56] B. D. Deebak, F. Al-Turjman, M. Aloqaily, and O. Alfandi, “IoT-BSFCAN: A smart context-aware system in IoT-Cloud using mobile-fogging,” Futur. Gener. Comput. Syst., vol. 109, pp. 368–381, Aug. 2020, doi: 10.1016/j.future.2020.03.050.

[57] S. K. Sharma and X. Wang, “Live Data Analytics with Collaborative Edge and Cloud Processing in Wireless IoT Networks,” IEEE Access, vol. 5, pp. 4621–4635, 2017, doi: 10.1109/ACCESS.2017.2682640.

[58] J. Al-Jaroodi and N. Mohamed, “PsCPS: A distributed platform for cloud and fog integrated smart cyber-physical systems,” IEEE Access, vol. 6, pp. 41432–41449, Jul. 2018, doi: 10.1109/ACCESS.2018.2856509.

[59] D. Happ and A. Wolisz, “Towards gateway to Cloud offloading in IoT publish/subscribe systems,” in 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), May 2017, pp. 101–106, doi: 10.1109/FMEC.2017.7946415.

[60] J. An et al., “EiF: Toward an Elastic IoT Fog Framework for AI Services,” IEEE Commun. Mag., vol. 57, no. 5, pp. 28–33, May 2019, doi: 10.1109/MCOM.2019.1800215.

[61] A. Malekian Borujeni, M. Fathy, and N. Mozayani, “A hierarchical, scalable architecture for a real-time monitoring system for an electrocardiography, using context-aware computing,” J. Biomed. Inform., vol. 96, p. 103251, Aug. 2019, doi: 10.1016/J.JBI.2019.103251.

[62] P. Y. Zhang, M. C. Zhou, and G. Fortino, “Security and trust issues in Fog computing: A survey,” Futur. Gener. Comput. Syst., vol. 88, pp. 16–27, Nov. 2018, doi: 10.1016/J.FUTURE.2018.05.008.
How to Cite
[1]
C. E. Romero Parra, M. Ángel Niño Zambrano, and C. A. Cobos Lozada, “Location criteria for computational intelligence algorithms in the web of things: a systematic literature review”, Investigación e Innovación en Ingenierías, vol. 9, no. 3, pp. 108–123, Dec. 2021.

Send mail to Author


Send Cancel

Custom technologies based on your needs

  • MongoDB
  • ElasticSearch
  • Redis
  • Solr
  • Memcached