Algoritmo Novedoso Para la Detección de Tareas Repetitivas en el Teclado

##plugins.themes.bootstrap3.article.main##

Bairon Londoño González
Paola Andrea Sánchez

Palabras clave

Automatización de tareas repetitivas, algoritmos para la detección de patrones, comandos de teclado, autómatas.

Resumen


En este artículo una herramienta para la detección de tareas repetitivas con secuencias lógicas realizadas a través de comandos del teclado, mediante el diseño e implementación de un algoritmo basado en el uso de autómatas finitos determinísticos y agentes de búsqueda de patrones. La novedad del algoritmo desarrollado radica en que está orientado a la detección de tareas repetitivas cuyas actividades tienen una secuencia lógica y que actualmente no se encuentran automatizadas por lo complejo que es esta labor


 


Abstract 483 | PDF COMPLETO Downloads 170 HTML Downloads 16 XML Downloads 0

Referencias

1. Coronato, A., d'Acierno, A., & De Pietro, G. (2005). Automatic implementation of constraints in component based applications. Information and Software Technology , 47 (7), 497-509.
2. Borràs, J., Moreno, A., & Valls, A. (2014). Intelligent tourism recommender systems: A survey. Expert Systems with Applications , 41 (16), 7370-7389
3. Li, G., Lian, H., Feng, S., & Zhu, L. (2013). Automatic variable selection for longitudinal generalized linear models. Computational Statistics & Data Analysis , 61, 174-186.
4. Alshalabi, H., Tiun, S., Omar, N., & Albared, M. (2013). Experiments on the Use of Feature Selection and Machine Learning Methods in Automatic Malay Text Categorization. Procedia Technology , 11, 748-754
5. Joo, M., & Zhou, Y. (2008). A novel framework for automatic generation of fuzzy neural networks. Neurocomputing , 71 (4-6), 584-591.
6. Chen, T., Zhang, X.-S., Guo, S.-Z., Li, H.-Y., & Wu, Y. (2013). State of the art: Dynamic symbolic execution for automated test generation. Future Generation Computer Systems , 29 (7), 1758-1773.
7. Ruvini, J., & Dony, C. (2000). APE: Learning User’s Habits to Automate Repetitive Tasks. Proceedings of the 2000 Conference on Intelligent User Interfaces.
8. Kaber, D., & Prinzel, L. Adaptive and Adaptable Automation Design: A Critical Review of the Literature and Recommendations for Future Research. Hanover: NASA. 2006
9. Sarter, N., Woods, D., & Billings, C. (1997). Automation Surprises. En G. Salvendry, Handbook of Human Factors & Ergonomics. Wiley.
10. Parasuraman, R., Sheridan, T., & Wickens, C. (2000). A Model for Types and Levels of Human Interaction. IEEE Transactions on systems, man, and cybernetics - Part A: Systems and Humans , 286-297.
11. Sagarna, R., Mendiburu, A., Inza, I., & Lozano, J. (2014). Assisting in search heuristics selection through multidimensional supervised classification: A case study on software testing. Information Sciences , 258, 122-139.
12. Sheridan, T., & Verplank, W. (1987). Human and computer control of undersea teleoperators. Cambridge, MA: MIT Man-Machine Laboratory.
13. Sah, M., & Wade, V. (2012). Automatic metadata mining from multilingual enterprise content. Web Semantics: Science, Services and Agents on the World Wide Web , 11, 41-62.
14. Kuo, R., Huang, Y., Lin, C., Wu, Y., & Zulvia, F. (2014). Automatic kernel clustering with bee colony optimization algorithm. Information Sciences , 283 (1), 107-122.
15. Les, T., Kruk, M., & Osowski, S. (2013). Automatic recognition of industrial tools using artificial intelligence approach. Expert Systems with Applications , 40 (12), 4777-4784.
16. Flanagan, C. (2004). Automatic software model checking via constraint logic. Science of Computer Programming , 50 (1-3), 253-270.
17. Gómez, A., Penadés, C., Canós, J., Borges, M., & Llavador, M. (2014). A framework for variable content document generation with multiple actors. Information and Software Technology , 56 (9), 1101-1121.
18. Darragh, J., & Witten, I. (1991). Adaptive predictive text generation and the reactive keyboard. Interacting with Computers , 3 (1), 27-50.
19. Osasan, K., & Stacey, T. (2014). Automatic prediction of time to failure of open pit mine slopes based on radar monitoring and inverse velocity method. International Journal of Mining Science and Technology , 24 (2), 275-280.
20. Palomo-Duarte, M., García-Domínguez, A., & Medina-Bulo, I. (2014). Automatic dynamic generation of likely invariants for WS-BPEL compositions. Expert Systems with Applications , 41 (11), 5014-5055.
21. Guo, Y., Wang, Y., & Liu, X. (2014). Real-time optical detection system for monitoring roller condition with automatic error compensation. Optics and Lasers in Engineering , 53, 69-78.
22. Cypher, A. (1993). Watch what I do: Programming by demonstration. Cambridge, Mass.: MIT Press.
23. Lieberman, H. (1993). Mondrian: A teachable graphical editor. En D. Cypher, In Watch what I do: Programming by demonstration. Cambridge, Mass.: MIT Press.
24. Maes, P. (1994). Agents that reduce workand information overload. Communications of the ACM , 37 (7), 31-40.
25. Maes, P., & Kozierok, R. (1993). Learning: Interface Agents. AAAI-93 Proceedings, (págs. 459-465).
26. Holling, H., Bertling, J., & Zeuch, N. (2009). Automatic item generation of probability word problems. Studies in Educational Evaluation , 35 (2-3), 71-76.
27. Myer, T. (2009). Apple Automator with AppleScript Bible. Indianapolis: Jhon Wiley & Sons.
28. Mitchell, T., Caruana, R., Freitag, D., McDermott, J., & Zabowski, D. (1994). Experience with a learning personal assistant. Communications of the ACM , 37 (7), 81-91.
29. Motoda, H. (1997). Machine learning techniques to make computers easier to use. Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI-97). San Francisco: Morgan Kaufmann.
30. Caglayan, A., Snorrason, M., Jacoby, J., Mazzu, J., Jones, R., & Kumar, K. (1997). Learn sesame: a learning agent engine. Applied Artificial Intelligence , 11, 393-412.
31. Armstrong, R., Freitag, D., Joachims, T., & Mitchell, T. (1995). WebWatcher: A learning apprentice for the World Wide Web. AAAI spring symposium on information gathering.
32. . Debroy, V., & Wong, W. (2014). Combining mutation and fault localization for automated program debugging. Journal of Systems and Software , 90, 45-60.
33. Ku, N., Jo, A., Ha, S., Rho, M., & Lee, K.-Y. (2012). Automatic generation of equations of motion for multibody system in discrete event simulation framework. Procedia Technology , 1, 55-64.
34. Guevara, C. (2012). Reconocimiento de patrones para identificación de usuarios en accesos informáticos. Madrid, España: Universidad Complutense de Madrid, Tesis de Maestría.
35. Argall, B., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robot. Auton. Syst. , 469-483.
36. Christl, A., Koschke, R., & Storey, M. (2007). Automated clustering to support the reflexion method. Information and Software Technology , 49 (3), 255-274.
37. Yigit, T., Isik, A., & Ince, M. (2014). Multi Criteria Decision Making System for Learning Object Repository. Procedia - Social and Behavioral Sciences , 141, 813-816.
38. Zhan, Y., & Clark, J. (2008). A search-based framework for automatic testing of MATLAB/Simulink models. Journal of Systems and Software , 81 (2), 262-285.
39. Derrode, S., & Pieczynski, W. (2013). Unsupervised data classification using pairwise Markov chains with automatic copulas selection. Computational Statistics & Data Analysis , 63, 81-98.
40. Hopcroft, J., Motwani, R., & Ullman, J. (2001). Introduction to Automata Theory, Languages, and Computation. Massachusetts, USA: Addison-Wesley.
41. Liu, D., Cui, B., Liu, Y., & Zhong, D. (2013). Automatic control and real-time monitoring system for earth–rock dam material truck watering. Automation in Construction , 30, 70-80.
42. Pérez, B., & Polo, M. (2009). Generación automática de casos de prueba para Líneas de Producto de Software. Revista Española de Innovación, Calidad e Ingeniería del Software , 5 (2), 17-27.
43. Dunn, k. (2004). Automatic update risks: can patching let a hacker in? Network Security , 2004 (7), 5-8.
44. Farjoodi, J., & Soroushian, A. (2001). Efficient Automatic Selection of Tolerances in Nonlinear Dynamic Analysis. En A. Zingoni, Structural Engineering, Mechanics and Computation (págs. 853-859). Oxford: Elsevier Science.
45. Fernández, A., Gómez, A., Lecumberry, F., Pardo, A., & Ramírez, I. (2014). Pattern Recognition in Latin America in the “Big Data” Era. Pattern Recognition , In press.
46. Yajun, Z., & Qian, Q. (2012). A New Type of Automatic Monitoring System of Static and Dynamic Displacement on Dam and Slope. Procedia Engineering , 43, 387-392.
47. Zhang, Y., Dang, Y., Chen, H., Thurmond, M., & Larson, C. (2009). Automatic online news monitoring and classification for syndromic surveillance. Decision Support Systems , 47 (4), 508-517.
48. Zhang, Y., Li, Y., & Zheng, W. (2013). Automatic software deployment using user-level virtualization for cloud-computing. Future Generation Computer Systems , 29 (1), 323-329.
49. Superalumnos. (07 de 11 de 2007). Superalumnos.net. Recuperado el 11 de 08 de 2014, de Base de datos de ejemplo: Inmobiliaria: http://superalumnos.net/base-de-datos-de-ejemplo-inmobiliaria
50. Sutton, R., & Barto, A. (1998). Reinforcement Learning: An Introduction. Cambridge: Cambridge University Press.
51. Van Royen, K., Poels, K., Daelema, W., & Vandebosch, H. (2014). Kathleen Van Royen, Karolien Poels, Walter Daelemans, Heidi Vandebosch, Automatic monitoring of cyberbullying on social networking sites: From technological feasibility to desirability. Telematics and Informatics , in Press.
52. Zhou, P., Li, D., Wu, H., & Cheng, F. (2011). The automatic model selection and variable kernel width for RBF neural networks. Neurocomputing , 74 (17), 3628-3637.
53. Arcuri, A., & Yao, X. (2008). Search based software testing of object-oriented container. Information Sciences , 178 (15), 3075-3095.
54. Xu, J. (2012). Rule-based automatic software performance diagnosis and improvement. Performance Evaluation , 69 (11), 525-550.
55. Zhang, Y., Zhang, L., & Alamgir, M. (2014). Adaptive 3D Facial Action Intensity Estimation and Emotion Recognition. Expert Systems with Applications , In press.
56. Alonso, D., Pastor, J., Sánchez, P., Álvarez, B., & Vicente-Chicote, C. (2012). Generación Automática de Software para Sistemas de Tiempo Real: Un Enfoque basado en Componentes, Modelos y Frameworks. Revista Iberoamericana de Automática e Informática Industrial RIAI , 9 (2), 170-181.
57. Wang, Y., Wang, D., & Fang, W. (2014). Automatic node selection and target tracking in wireless camera sensor networks. Computers & Electrical Engineering , 40 (2), 484-493.
58. Zienkiewicz, O., Taylor, R., & Zhu, J. (2013). Automatic Mesh Generation. En O. Zienkiewicz, R. Taylor, & J. Zhu, The Finite Element Method: its Basis and Fundamentals (Septima edición ed., págs. 573-640). Oxford: Butterworth-Heinemann.
59. Mokhtarian, F., & Abbasi, S. (2005). Robust automatic selection of optimal views in multi-view free-form object recognition. Pattern Recognition , 38 (7), 1021-1031.
60. Moral, S. (2006). Modelos de Computación I. Granada, España: Guias de asignatura. Universidad de Granada.
61. Seok, J., & Seong, H. (2015). Automatic generation algorithm of expected results for testing of component-based software system. Information and Software Technology , 57, 1-20.
62. Shih, H. (2014). A robust occupancy detection and tracking algorithm for the automatic monitoring and commissioning of a building. Energy and Buildings , 77, 270-280.
63. Varela-Vaca, A., & Gasca, R. (2013). Towards the automatic and optimal selection of risk treatments for business processes using a constraint programming approach. Information and Software Technology , 55 (11), 1948-1973.
64. Wang, Q., & Yu, X. (2014). Ontology based automatic feature recognition framework. Computers in Industry , 65 (7), 1041-1052.
65. Shahriar, H., & Zulkernine, M. (2011). Taxonomy and classification of automatic monitoring of program security vulnerability exploitations. Journal of Systems and Software , 84 (2), 250-269.
66. Arcuri, A. (2011). Evolutionary repair of faulty software. Applied Soft Computing , 11 (4), 3494-3514.
67. Cobo, L., Subramanian, K., Isbell, C., Lanterman, A., & Thomaz, A. (2014). Abstraction from demonstration for efficient reinforcement learning in high-dimensional domains. Artificial Intelligence , 103-128.
68. Dehua, W., Pan, L., Bo, L., & Zeng, G. (2012). Water Quality Automatic Monitoring System Based on GPRS Data Communications. Procedia Engineering , 28, 840-843.
69. Dominguez, A., Tojo, J., & Castier, M. (2002). Automatic implementation of thermodynamic models for reliable parameter estimation using computer algebra. Computers & Chemical Engineering , 26 (10), 1473-1479.
70. Liu, D., Yang, Z., Tang, C., Wang, J., & Liu, Y. (2004). An automatic monitoring system for the shiplock slope of Wuqiangxi Hydropower Station. Engineering Geology , 76 (1-2), 79-91.
71. Lu, C., & Lu, Z. (2008). Local feature extraction for iris recognition with automatic scale selection. Image and Vision Computing , 26 (7), 935-940.
72. Lucey, P., Cohn, J., Prkachin, K., Solomon, P., Chew, S., & Matthews, I. (2012). Painful monitoring: Automatic pain monitoring using the UNBC-McMaster shoulder pain expression archive database. Image and Vision Computing , 30 (3), 197-205.
73. Messelis, T., & De Causmaecker, P. (2014). An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem. European Journal of Operational Research , 233 (3), 511-528.