Derechos de autor 2024 Investigación e Innovación en Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Interacción con microondas de las nanopartículas magnéticas y óxido de grafeno magnético y sus aplicaciones como susceptor en el calentamiento electromagnético de crudo pesado
Corresponding Author(s) : Manuel Roa Ardila
Investigación e Innovación en Ingenierías,
Vol. 8 Núm. 2 (2020): Julio - Diciembre
Resumen
Objetivo: Proponer y evaluar una tecnología que mejore la movilidad de crudos pesados, mediante la adición de nanopartículas magnéticas y la aplicación de campos electromagnéticos externos. Metodología: Se caracterizaron individualmente el crudo pesado, las nanopartículas de magnetita y el grafeno magnético. Se evaluó el comportamiento magneto-reológico del crudo pesado y de sus mezclas con nanopartículas y grafeno magnético en un rango de composiciones en el rango 0.5 %wt a 10 %wt. Posteriormente, estas mezclas se sometieron a radiación electromagnética en el rango de las microondas, para diferentes composiciones y tiempos de radiación. Estos tratamientos se realizaron en una cavidad electromagnética y en una guía de onda cilíndrica, con potencias entre 0.8 kW y 1 kW. Resultados: El crudo original no respondió al tratamiento con radiación electromagnética, siendo transparente a éste. Sin embargo, con la adición de nanopartículas magnéticas, tanto de magnetita como de grafeno magnético, la mezcla interactuó fuertemente con el campo electromagnético. A mayor concentración de estas partículas, mayor fue el incremento de la temperatura de la mezcla. Para experimentos en la cavidad electromagnética, se evidenció un incremento desde la temperatura inicial de 22 °C hasta el rango 58.2 °C – 60 °C para el caso de la magnetita a una concentración de 0.5 % wt en 60 s. Para experimentos utilizando como aplicador la guía de onda cilíndrica y para las mismas condiciones experimentales anteriores, se alcanzaron temperaturas por encima de los 90 °C. Utilizando el grafeno magnético y la misma cavidad electromagnética se alcanzaron temperaturas en el rango de 81.9 °C-96.5 °C. Conclusiones: Ambos materiales incrementan notablemente el calentamiento del crudo pesado (disminuyendo su viscosidad), cuando se someten a radiación electromagnética en el rango de las microondas, y podrían considerarse candidatos para mejorar los procesos de extracción y transporte de crudo.
Palabras clave
Descargar cita
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Deng, X. Wen, and Q. Wang, "Solvothermal in situ synthesis of Fe3O4-multi-walled carbon nanotubes with enhanced heterogeneous Fenton-like activity", Mater Res Bull, vol. 47, pp. 3369–3376, 2012. DOI: https://doi.org/10.1016/j.materresbull.2012.07.021.
- TD. Nguyen, NH. Phan, MH. Do, and KT. Ngo, "Magnetic Fe2MO4 (M:Fe,Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange", J Hazard Mater, vol. 185, pp. 653–61, 2011. DOI: https://doi.org/10.1016/j.jhazmat.2010.09.068.
- NA. Zubir, C. Yacou, J. Motuzas, X. Zhang, Da. Diniz, and JC. Costa, "Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction", Sci Rep, vol. 4, pp. 1–8, 2014. DOI: https://doi.org/10.1038/srep04594.
- I. Gómez, R. Cabanzo and E. Mejia-Ospino, "Facile method to functionalize graphene oxide with variable load of magnetite nanoparticles. IOP Conf", Journal of Physics: Conf. Series, vol. 1247, 2019. DOI: https://doi.org/1742-6596/1247/1/01203167.
- D. Marcano, D. Kosynkin, J. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, et al., "Improved Synthesis of Graphene Oxide", ACS Nano, vol. 4, pp. 4806–4814, 2010. DOI: https://doi.org/10.1021/nn1006368.
- I. David and AJE. Welch, "The oxidation of magnetite and related spinels. Constitution of gamma ferric oxide", Trans Faraday Soc, vol. 52, 1956. DOI: https://doi.org/tf9565201642.
- A. Alazmi, S. Rasul, SP. Patole and PMFJ. Costa, "Comparative study of synthesis and reduction methods for graphene oxide", Polyhedron, vol. 116, pp. 153–161. 2016. DOI: https://doi.org/j.poly.2016.04.044.
- H. Yu, B. Zhang, C. Bulin, R. Li and R. Xing, "High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method", Sci Rep, vol. 6, pp. 1–7, 2016. DOI: https://doi.org/srep36143.
- RM. Cornell and U. Schwertmann, "The Iron Oxides. Structure, Properties, Reactions", Occurences and Uses. 2 ed. 2003. DOI: https://doi.org/3527602097.ch1.
- J. B. Mamani, A. J. Costa-Filho, D. R. Cornejo, E. D. Vieira, and L. F. Gamarra, "Synthesis and characterization of magnetite nanoparticles coated with lauric acid", Materials Characterization, vol. 81, pp. 28-36, 2013. DOI: https://doi.org/j.matchar.2013.04.001
- X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang and Y. Chen, "Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers", J Mater Chem, vol. 19, 2009, DOI: https://doi.org/b821416f.
- X. Yang, C. Chen, J. Li, G. Zhao, X. Ren and X. Wang, "Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants", RSC Adv, vol. 2, pp. 8821–8826, 2012. DOI: https://doi.org/c2ra20885g.
- L. Zhang, J. Wu, H. Liao, Y. Hou and S. Gao, "Octahedral Fe3O4 nanoparticles and their assembled structures", Chem Commun, vol. 4378, 2009. DOI: https://doi.org/10.1039/b906636e.
- NR. Wilson, PA. Pandey, R. Beanland, RJ. Young, IA. Kinloch, and. L. Gong, et al, "Graphene oxide: Structural analysis and application as a highly transparent support for electron Mmcroscopy", ACS Nano, vol. 3, pp. 2547–2556, 2009. DOI: https://doi.org/nn900694t.
- Di Iorio, E., Colombo, C., Cheng, Z., Capitani, G., Mele, D., Ventruti, G, and R. Angelico, "Characterization of magnetite nanoparticles synthetized from Fe(II)/nitrate solutions for arsenic removal from water", Journal of Environmental Chemical Engineering, vol. 102986, 2019. DOI: https://doi.org/j.jece.2019.102986
- X. Wang, Z. Zhao, J. Qu, Z. Wang and J. Qiu, "Shape-control and characterization of magnetite prepared via a one-step solvothermal route", Cryst Growth Des, vol. 10, pp. 2863–2869, 2010. DOI: https://doi.org/cg900472d.
- A. M. Raspolli Galletti, E. Bertolucci, M. Marracci, B. Tellini, and C. Visone, "Characterization of magnetite nanoparticles", 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014. DOI: https://doi.org/i2mtc.2014.6860788
- LJ. Felicia and J. Philip, "Probing of field-induced structures and tunable rheological properties of surfactant capped magnetically polarizable nanofluids", Langmuir, vol. 29, pp. 110–120, 2013. DOI: https://doi.org/la304118b.
- Jeset de Jesús Imbrecht Tafur, Prototype for heating a fluid by microwave in laminar or turbulent flow Research Work Presented as a Requirement to Opt for the Degree of Electronic Engineer,Universidad Industrial de Santander, 2018.
Referencias
J. Deng, X. Wen, and Q. Wang, "Solvothermal in situ synthesis of Fe3O4-multi-walled carbon nanotubes with enhanced heterogeneous Fenton-like activity", Mater Res Bull, vol. 47, pp. 3369–3376, 2012. DOI: https://doi.org/10.1016/j.materresbull.2012.07.021.
TD. Nguyen, NH. Phan, MH. Do, and KT. Ngo, "Magnetic Fe2MO4 (M:Fe,Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange", J Hazard Mater, vol. 185, pp. 653–61, 2011. DOI: https://doi.org/10.1016/j.jhazmat.2010.09.068.
NA. Zubir, C. Yacou, J. Motuzas, X. Zhang, Da. Diniz, and JC. Costa, "Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction", Sci Rep, vol. 4, pp. 1–8, 2014. DOI: https://doi.org/10.1038/srep04594.
I. Gómez, R. Cabanzo and E. Mejia-Ospino, "Facile method to functionalize graphene oxide with variable load of magnetite nanoparticles. IOP Conf", Journal of Physics: Conf. Series, vol. 1247, 2019. DOI: https://doi.org/1742-6596/1247/1/01203167.
D. Marcano, D. Kosynkin, J. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, et al., "Improved Synthesis of Graphene Oxide", ACS Nano, vol. 4, pp. 4806–4814, 2010. DOI: https://doi.org/10.1021/nn1006368.
I. David and AJE. Welch, "The oxidation of magnetite and related spinels. Constitution of gamma ferric oxide", Trans Faraday Soc, vol. 52, 1956. DOI: https://doi.org/tf9565201642.
A. Alazmi, S. Rasul, SP. Patole and PMFJ. Costa, "Comparative study of synthesis and reduction methods for graphene oxide", Polyhedron, vol. 116, pp. 153–161. 2016. DOI: https://doi.org/j.poly.2016.04.044.
H. Yu, B. Zhang, C. Bulin, R. Li and R. Xing, "High-efficient Synthesis of Graphene Oxide Based on Improved Hummers Method", Sci Rep, vol. 6, pp. 1–7, 2016. DOI: https://doi.org/srep36143.
RM. Cornell and U. Schwertmann, "The Iron Oxides. Structure, Properties, Reactions", Occurences and Uses. 2 ed. 2003. DOI: https://doi.org/3527602097.ch1.
J. B. Mamani, A. J. Costa-Filho, D. R. Cornejo, E. D. Vieira, and L. F. Gamarra, "Synthesis and characterization of magnetite nanoparticles coated with lauric acid", Materials Characterization, vol. 81, pp. 28-36, 2013. DOI: https://doi.org/j.matchar.2013.04.001
X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang and Y. Chen, "Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers", J Mater Chem, vol. 19, 2009, DOI: https://doi.org/b821416f.
X. Yang, C. Chen, J. Li, G. Zhao, X. Ren and X. Wang, "Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants", RSC Adv, vol. 2, pp. 8821–8826, 2012. DOI: https://doi.org/c2ra20885g.
L. Zhang, J. Wu, H. Liao, Y. Hou and S. Gao, "Octahedral Fe3O4 nanoparticles and their assembled structures", Chem Commun, vol. 4378, 2009. DOI: https://doi.org/10.1039/b906636e.
NR. Wilson, PA. Pandey, R. Beanland, RJ. Young, IA. Kinloch, and. L. Gong, et al, "Graphene oxide: Structural analysis and application as a highly transparent support for electron Mmcroscopy", ACS Nano, vol. 3, pp. 2547–2556, 2009. DOI: https://doi.org/nn900694t.
Di Iorio, E., Colombo, C., Cheng, Z., Capitani, G., Mele, D., Ventruti, G, and R. Angelico, "Characterization of magnetite nanoparticles synthetized from Fe(II)/nitrate solutions for arsenic removal from water", Journal of Environmental Chemical Engineering, vol. 102986, 2019. DOI: https://doi.org/j.jece.2019.102986
X. Wang, Z. Zhao, J. Qu, Z. Wang and J. Qiu, "Shape-control and characterization of magnetite prepared via a one-step solvothermal route", Cryst Growth Des, vol. 10, pp. 2863–2869, 2010. DOI: https://doi.org/cg900472d.
A. M. Raspolli Galletti, E. Bertolucci, M. Marracci, B. Tellini, and C. Visone, "Characterization of magnetite nanoparticles", 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014. DOI: https://doi.org/i2mtc.2014.6860788
LJ. Felicia and J. Philip, "Probing of field-induced structures and tunable rheological properties of surfactant capped magnetically polarizable nanofluids", Langmuir, vol. 29, pp. 110–120, 2013. DOI: https://doi.org/la304118b.
Jeset de Jesús Imbrecht Tafur, Prototype for heating a fluid by microwave in laminar or turbulent flow Research Work Presented as a Requirement to Opt for the Degree of Electronic Engineer,Universidad Industrial de Santander, 2018.