Derechos de autor 2020 Investigación e Innovación en Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Ambiente visual integrado de desarrollo para el aprendizaje de programación en robótica
Corresponding Author(s) : Carlos Alejandro Ruíz Ramírez
Investigación e Innovación en Ingenierías,
Vol. 9 Núm. 1 (2021): Enero-Junio
Resumen
Objetivo: revisar algunos aspectos y características positivas del uso de la robótica en ambientes educativos y describir algunas de las características de los lenguajes de programación utilizados en su implementación. Metodología: se explica como un ambiente de desarrollo implementado mediante el uso de algunas características de computación en la nube, puede ser usado para aplicar robótica en escuelas, colegios y universidades. El entorno de programación combina la programación gráfica utilizando notación de procesos de trabajo (BPM) y programación textual. Resultados: se demostró que se puede hacer una transición gradual de lenguajes visuales a lenguajes de programación textuales, así como las ventajas de aprender estándares que permiten el potenciar el aprendizaje de habilidades en el modelado de procesos.
Conclusiones: se comprobó la capacidad que tienen los entornos de programación diseñados con propósitos educativos para trabajar la robótica en un ambiente cloud computing, reduciendo la brecha que permite pasar de una programación gráfica a una programación textual usando múltiples dispositivos robóticos, en un único escenario de desarrollo.
Palabras clave
Descargar cita
Endnote/Zotero/Mendeley (RIS)BibTeX
- Wiggins, G., & Smaill, A. (2013). Musical Knowledge: what can Artificial Intelligence bring to the musician? In Readings in music and artificial intelligence (pp. 39-56). Routledge.
- Prentzas, J. (2013). Artificial intelligence methods in early childhood education. In Artificial Intelligence, Evolutionary Computing and Metaheuristics (pp. 169-199). Springer, Berlin, Heidelberg.
- Ya-Wen C., Pei-Chen S., Nian-Shing C. (2018) The essential applications of educational robot: Requirement analysis from the perspectives of experts, researchers and instructors. Computers & Education, Volume 126, 2018, Pages 399-416, ISSN 0360-1315, https://doi.org/10.1016/j.compedu.2018.07.020.
- Charoula A., Nicos V. (2019) Developing young children's computational thinking with educational robotics: An interaction effect between gender and scaffolding strategy. Computers in Human Behavior. 2019, 105954, ISSN 0747-5632, https://doi.org/10.1016/j.chb.2019.03.018.
- Prensky, M. (2001). Digital natives, digital immigrants’ part 1. On the horizon, 9(5), 1-6.
- Prensky, M., & Berry, B. D. (2001). Do they really think differently? On the horizon, 9(6), 1-9.
- De Wever, B., Mechant, P., Veevaete, P., & Hauttekeete, L. (2007). E-Learning 2.0: social software for educational use. In Ninth IEEE International Symposium on Multimedia Workshops (ISMW 2007) (pp. 511-516). IEEE.
- Fovet, F. (2009). Impact of the use of Facebook amongst students of high school age with Social, Emotional and Behavioural Difficulties (SEBD). In 2009 39th IEEE Frontiers in Education Conference (pp. 1-6). IEEE.
- Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.
- Ruzzenente, M., Koo, M., Nielsen, K., Grespan, L., & Fiorini, P. (2012). A review of robotics kits for tertiary education. In Proceedings of International Workshop Teaching Robotics Teaching with Robotics: Integrating Robotics in School Curriculum (pp. 153-162).
- Larcher, A., Turri, F., Collins, J., Derweesh, I., Volpe, A., Kaouk,J., Ficarra, V., Porpiglia, F., Capitanio, U., Siemer, S., Rha, K., Stolzenburg, J., Ahlawat, R., Murphy, D., Naeyer, G., Vaessen, C., Challacombe, B., Novara, G., Porter, J., Moon, D., Buffi, N., Minervini, A., Ploumidis, A., Montorsi, F., Wiklund, P., Poel, D., Mottrie, A. (2018) Definition of a structured training curriculum for robot-assisted partial nephrectomy: A Delphi-consensus study from the ERUS Educational Board. European Urology Supplements, Volume 17, Issue 2, 2018, Pages e678-e682, ISSN 1569-9056, https://doi.org/10.1016/S1569-9056(18)31310-1.
- Reich-Stiebert, N., Eyssel, F., Hohnemann, C. (2019) Involve the user! Changing attitudes toward robots by user participation in a robot prototyping process. Computers in Human Behavior, Volume 91, 2019, Pages 290-296, ISSN 0747-5632, https://doi.org/10.1016/j.chb.2018.09.041.
- Blais, B. S. (2010). Using Python to Program LEGO Mindstorms Robots: The PyNXC Project. Python Papers.
- Seiler, S., Sell, R., & Ptasik, D. (2012). Embedded System and Robotic Education in a Blended Learning Environment Utilizing Remote and Virtual Labs in the Cloud, Accompanied by â Robotic HomeLab Kitâ. International Journal of Emerging Technologies in Learning (iJET), 7(4), 26-33.
- Xie, X., Chien-Chung H., Chen, Y., Hao, F. (2019) Intelligent robots and rural children. Children and Youth Services Review, Volume 100, 2019, Pages 283-290, ISSN 0190-7409, https://doi.org/10.1016/j.childyouth.2019.03.004.
- Fernández-Llamas, C., Conde, M., Rodríguez-Lera, F., Rodríguez-Sedano, F. García, F. (2018) May I teach you? Students' behavior when lectured by robotic vs. human teachers. Computers in Human Behavior, Volume 80, 2018, Pages 460-469, ISSN 0747-5632, https://doi.org/10.1016/j.chb.2017.09.028.
- Campusano, M., Fabry, J., Bergel, A. (2019) Live programming in practice: A controlled experiment on state machines for robotic behaviors. Information and Software Technology, Volume 108, 2019, Pages 99-114, ISSN 0950-5849, https://doi.org/10.1016/j.infsof.2018.12.008.
- Jost, B., Ketterl, M., Budde, R., & Leimbach, T. (2014). Graphical programming environments for educational robots: Open roberta-yet another one? In 2014 IEEE International Symposium on Multimedia (pp. 381-386). IEEE.
- Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch programming language and environment. ACM Transactions on Computing Education (TOCE), 10(4), 16.
- Gomez-de-Gabriel, J. M., Mandow, A., Fernandez-Lozano, J., & Garcia-Cerezo, A. J. (2010). Using LEGO NXT mobile robots with LabVIEW for undergraduate courses on mechatronics. IEEE Transactions on Education, 54(1), 41-47.
- Pedersen, R. U., Nørbjerg, J., & Scholz, M. P. (2009). Embedded programming education with lego mindstorms nxt using java (lejos), eclipse (xpairtise), and python (pymite). In Proceedings of the 2009 Workshop on Embedded Systems Education (pp. 50-55). ACM.
- Royce, W. W. (1987, March). Managing the development of large software systems: concepts and techniques. In Proceedings of the 9th international conference on Software Engineering (pp. 328-338). IEEE Computer Society Press.
- White, S. A. (2004). Introduction to BPMN. IBM Cooperation, 2(0).
- Kransner, G. E. (1988). A coolbook for using the model-view-controller user interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3), 26-49.
Referencias
Wiggins, G., & Smaill, A. (2013). Musical Knowledge: what can Artificial Intelligence bring to the musician? In Readings in music and artificial intelligence (pp. 39-56). Routledge.
Prentzas, J. (2013). Artificial intelligence methods in early childhood education. In Artificial Intelligence, Evolutionary Computing and Metaheuristics (pp. 169-199). Springer, Berlin, Heidelberg.
Ya-Wen C., Pei-Chen S., Nian-Shing C. (2018) The essential applications of educational robot: Requirement analysis from the perspectives of experts, researchers and instructors. Computers & Education, Volume 126, 2018, Pages 399-416, ISSN 0360-1315, https://doi.org/10.1016/j.compedu.2018.07.020.
Charoula A., Nicos V. (2019) Developing young children's computational thinking with educational robotics: An interaction effect between gender and scaffolding strategy. Computers in Human Behavior. 2019, 105954, ISSN 0747-5632, https://doi.org/10.1016/j.chb.2019.03.018.
Prensky, M. (2001). Digital natives, digital immigrants’ part 1. On the horizon, 9(5), 1-6.
Prensky, M., & Berry, B. D. (2001). Do they really think differently? On the horizon, 9(6), 1-9.
De Wever, B., Mechant, P., Veevaete, P., & Hauttekeete, L. (2007). E-Learning 2.0: social software for educational use. In Ninth IEEE International Symposium on Multimedia Workshops (ISMW 2007) (pp. 511-516). IEEE.
Fovet, F. (2009). Impact of the use of Facebook amongst students of high school age with Social, Emotional and Behavioural Difficulties (SEBD). In 2009 39th IEEE Frontiers in Education Conference (pp. 1-6). IEEE.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.
Ruzzenente, M., Koo, M., Nielsen, K., Grespan, L., & Fiorini, P. (2012). A review of robotics kits for tertiary education. In Proceedings of International Workshop Teaching Robotics Teaching with Robotics: Integrating Robotics in School Curriculum (pp. 153-162).
Larcher, A., Turri, F., Collins, J., Derweesh, I., Volpe, A., Kaouk,J., Ficarra, V., Porpiglia, F., Capitanio, U., Siemer, S., Rha, K., Stolzenburg, J., Ahlawat, R., Murphy, D., Naeyer, G., Vaessen, C., Challacombe, B., Novara, G., Porter, J., Moon, D., Buffi, N., Minervini, A., Ploumidis, A., Montorsi, F., Wiklund, P., Poel, D., Mottrie, A. (2018) Definition of a structured training curriculum for robot-assisted partial nephrectomy: A Delphi-consensus study from the ERUS Educational Board. European Urology Supplements, Volume 17, Issue 2, 2018, Pages e678-e682, ISSN 1569-9056, https://doi.org/10.1016/S1569-9056(18)31310-1.
Reich-Stiebert, N., Eyssel, F., Hohnemann, C. (2019) Involve the user! Changing attitudes toward robots by user participation in a robot prototyping process. Computers in Human Behavior, Volume 91, 2019, Pages 290-296, ISSN 0747-5632, https://doi.org/10.1016/j.chb.2018.09.041.
Blais, B. S. (2010). Using Python to Program LEGO Mindstorms Robots: The PyNXC Project. Python Papers.
Seiler, S., Sell, R., & Ptasik, D. (2012). Embedded System and Robotic Education in a Blended Learning Environment Utilizing Remote and Virtual Labs in the Cloud, Accompanied by â Robotic HomeLab Kitâ. International Journal of Emerging Technologies in Learning (iJET), 7(4), 26-33.
Xie, X., Chien-Chung H., Chen, Y., Hao, F. (2019) Intelligent robots and rural children. Children and Youth Services Review, Volume 100, 2019, Pages 283-290, ISSN 0190-7409, https://doi.org/10.1016/j.childyouth.2019.03.004.
Fernández-Llamas, C., Conde, M., Rodríguez-Lera, F., Rodríguez-Sedano, F. García, F. (2018) May I teach you? Students' behavior when lectured by robotic vs. human teachers. Computers in Human Behavior, Volume 80, 2018, Pages 460-469, ISSN 0747-5632, https://doi.org/10.1016/j.chb.2017.09.028.
Campusano, M., Fabry, J., Bergel, A. (2019) Live programming in practice: A controlled experiment on state machines for robotic behaviors. Information and Software Technology, Volume 108, 2019, Pages 99-114, ISSN 0950-5849, https://doi.org/10.1016/j.infsof.2018.12.008.
Jost, B., Ketterl, M., Budde, R., & Leimbach, T. (2014). Graphical programming environments for educational robots: Open roberta-yet another one? In 2014 IEEE International Symposium on Multimedia (pp. 381-386). IEEE.
Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch programming language and environment. ACM Transactions on Computing Education (TOCE), 10(4), 16.
Gomez-de-Gabriel, J. M., Mandow, A., Fernandez-Lozano, J., & Garcia-Cerezo, A. J. (2010). Using LEGO NXT mobile robots with LabVIEW for undergraduate courses on mechatronics. IEEE Transactions on Education, 54(1), 41-47.
Pedersen, R. U., Nørbjerg, J., & Scholz, M. P. (2009). Embedded programming education with lego mindstorms nxt using java (lejos), eclipse (xpairtise), and python (pymite). In Proceedings of the 2009 Workshop on Embedded Systems Education (pp. 50-55). ACM.
Royce, W. W. (1987, March). Managing the development of large software systems: concepts and techniques. In Proceedings of the 9th international conference on Software Engineering (pp. 328-338). IEEE Computer Society Press.
White, S. A. (2004). Introduction to BPMN. IBM Cooperation, 2(0).
Kransner, G. E. (1988). A coolbook for using the model-view-controller user interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 1(3), 26-49.