Derechos de autor 2021 Investigación e Innovación en Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Vehículos aéreos no tripulados como alternativa de solución a los retos de innovación en diferentes campos de aplicación: una revisión de la literatura
Corresponding Author(s) : Jeison Eduardo Eslava Pedraza
Investigación e Innovación en Ingenierías,
Vol. 9 Núm. 1 (2021): Enero-Junio
Resumen
Objetivo: Identificar los principales campos de aplicación en los que los vehículos aéreos no tripulados son una alternativa de solución innovadora, así como las tecnologías implementadas en ellos, articulando información fragmentada.
Metodología: Mediante la herramienta Tree of Science se desarrolló una búsqueda inicial en Web of Science y con base en la información obtenida se complementó con el modelo de revisión sistemática tomado como referencia las bases de datos Scopus, ScienceDirec, IEEE y Web of Science aplicando una selección y descarte de información de las diferentes investigaciones relacionadas.
Resultados y Conclusiones: Se seleccionaron un total de 81 artículos que fueron analizados y estudiados acorde a las aplicaciones de enfoque donde los vehículos aéreos no tripulados han presentado aportes, soluciones y alternativas a las labores diarias implementadas en áreas como agricultura, ambiente, militar, logística, mapeo y geociencias. Los vehículos aéreos más utilizados como alternativa de solución son los multirrotor que obtuvieron un 58.82 % de participación, seguido de los ala fija o flexible con un 31.76 %. Además, se encontró que el 91.36 % adaptan cámaras en estas aeronaves para el desarrollo de sus estudios. Finalmente, se observó que el área de la logística, en términos generales, es un tema potencial para estudios futuros.
Palabras clave
Descargar cita
Endnote/Zotero/Mendeley (RIS)BibTeX
-
[1] B. D. Song, K. Park, and J. Kim, “Persistent UAV delivery logistics: MILP formulation and efficient heuristic,” Comput. Ind. Eng., vol. 120, no. February 2017, pp. 418–428, 2018, DOI:10.1016/j.cie.2018.05.013.
[2] L. D. M. Lam, A. Tang, and J. Grundy, “Heuristics-based indoor positioning systems: a systematic literature review,” J. Locat. Based Serv., vol. 10, no. 3, pp. 178–211, 2016, DOI:10.1080/17489725.2016.1232842.
[3] C. Zhang and J. M. Kovacs, “The application of small unmanned aerial systems for precision agriculture: A review,” Precis. Agric., vol. 13, no. 6, pp. 693–712, 2012, DOI:10.1007/s11119-012-9274-5.
[4] A. C. Watts, V. G. Ambrosia, and E. A. Hinkley, “Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use,” Remote Sens., vol. 4, no. 6, pp. 1671–1692, 2012, DOI:10.3390/rs4061671.
[5] G. Pajares, “Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs),” Photogramm. Eng. Remote Sensing, vol. 81, no. 4, pp. 281–329, 2015, DOI:10.14358/PERS.81.4.281.
[6] S. Hayat, E. Yanmaz, and R. Muzaffar, “Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint,” IEEE Commun. Surv. Tutorials, vol. 18, no. 4, pp. 2624–2661, 2016, DOI:10.1109/COMST.2016.2560343.
[7] D. Popescu, F. Stoican, L. Ichim, G. Stamatescu, and C. Dragana, “Collaborative UAV-WSN system for data acquisition and processing in agriculture,” Proc. 2019 10th IEEE Int. Conf. Intell. Data Acquis. Adv. Comput. Syst. Technol. Appl. IDAACS 2019, vol. 1, pp. 519–524, 2019, DOI:10.1109/IDAACS.2019.8924424.
[8] T. Niedzielski, “Applications of Unmanned Aerial Vehicles in Geosciences: Introduction,” no. November, pp. 1–4, 2019, DOI:10.1007/978-3-030-03171-8_1.
[9] P. V. M. Maia, R. M. Santos, J. R. P. Vaz, M. O. Silva, and E. F. Lins, “Experimental study of three different airfoils applied to diffuser-augmented wind turbines,” J. Urban Environ. Eng., vol. 12, no. 1, pp. 147–153, 2018, DOI:10.4090/juee.
[10] D. Lopez and Joana Andrea, “Marketing en Redes Sociales Online como herramienta de marketing Emprendedor,” Univeridad Nacional de Colombia, 2016.
[11] J. C. Marín, S. Robledo, and N. D. Duque, “Marketing emprendedor: una perspectiva cronologica utilizando tree of science,” Civilizar Empres. y Econ., vol. 13, no. 1, pp. 113–123, 2017.
[12] J. Toro and M. D. P. Rodríguez, “Formación en ética en las organizaciones: Revisión de la literatura,” Inf. Tecnol., vol. 28, no. 2, pp. 167–180, 2017, DOI:10.4067/S0718-07642017000200018.
[13] C. Manterola, P. Astudillo, E. Arias, and N. Claros, “Revisiones sistemáticas de la literatura. Qué se debe saber acerca de ellas,” Cir. Esp., vol. 91, no. 3, pp. 149–155, 2013, DOI:10.1016/j.ciresp.2011.07.009.
[14] E. L. García Alba, “Características y utilidad de las Revisiones Sistemáticas o Meta-análisis,” Rev. Científica Cienc. Médica, vol. 16, no. 2, pp. 4–5, 2013.
[15] J. Primicerio et al., “A flexible unmanned aerial vehicle for precision agriculture,” Precis. Agric., vol. 13, no. 4, pp. 517–523, 2012, DOI:10.1007/s11119-012-9257-6.
[16] P. Hu, W. Guo, S. C. Chapman, Y. Guo, and B. Zheng, “Pixel size of aerial imagery constrains the applications of unmanned aerial vehicle in crop breeding,” ISPRS J. Photogramm. Remote Sens., vol. 154, no. June 2018, pp. 1–9, 2019, DOI:10.1016/j.isprsjprs.2019.05.008.
[17] N. Chebrolu, T. Labe, and C. Stachniss, “Robust long-term registration of UAV images of crop fields for precision agriculture,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3097–3104, 2018, DOI:10.1109/LRA.2018.2849603.
[18] P. Katsigiannis, L. Misopolinos, V. Liakopoulos, T. K. Alexandridis, and G. Zalidis, “An autonomous multi-sensor UAV system for reduced-input precision agriculture applications,” 24th Mediterr. Conf. Control Autom. MED 2016, pp. 60–64, 2016, DOI:10.1109/MED.2016.7535938.
[19] A. M. Abuleil, G. W. Taylor, and M. Moussa, “An Integrated System for Mapping Red Clover Ground Cover Using Unmanned Aerial Vehicles: A Case Study in Precision Agriculture,” Proc. -2015 12th Conf. Comput. Robot Vision, CRV 2015, pp. 277–284, 2015, DOI:10.1109/CRV.2015.43.
[20] S. Bhandari, A. Raheja, R. L. Green, and D. Do, “Towards collaboration between unmanned aerial and ground vehicles for precision agriculture,” Auton. Air Gr. Sens. Syst. Agric. Optim. Phenotyping II, vol. 10218, p. 1021806, 2017, DOI:10.1117/12.2262049.
[21] V. Lukas et al., “The combination of UAV survey and Landsat imagery for monitoring of crop vigor in precision agriculture,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 41, no. July, pp. 953–957, 2016, DOI:10.5194/isprsarchives-XLI-B8-953-2016.
[22] A. Mateen and Q. Zhu, “Weed detection in wheat crop using UAV for precision agriculture,” Pakistan J. Agric. Sci., vol. 56, no. 3, pp. 809–817, 2019, DOI:10.21162/PAKJAS/19.8116.
[23] L. Comba, A. Biglia, D. Ricauda Aimonino, and P. Gay, “Unsupervised detection of vineyards by 3D point-cloud UAV photogrammetry for precision agriculture,” Comput. Electron. Agric., vol. 155, no. October, pp. 84–95, 2018, DOI:10.1016/j.compag.2018.10.005.
[24] X. Q. Zhang et al., “Application of Multi-rotor Unmanned Aerial Vehicle Application in Management of Stem Borer (Lepidoptera) in Sugarcane,” Sugar Tech, vol. 21, no. 5, pp. 847–852, 2019, DOI:10.1007/s12355-018-0695-y.
[25] P. Venkata Subba Rao and S. R. Gorantla, “Design and Modelling of anAffordable UAV Based Pesticide Sprayer in Agriculture Applications,” 5th Int. Conf. Electr. Energy Syst. ICEES 2019, vol. 360, no. February, pp. 1–4, 2019, DOI:10.1109/ICEES.2019.8719237.
[26] J. Yue, T. Lei, C. Li, and J. Zhu, “The Application of Unmanned Aerial Vehicle Remote Sensing in Quickly Monitoring Crop Pests,” Intell. Autom. Soft Comput., vol. 18, no. 8, pp. 1043–1052, 2012, DOI:10.1080/10798587.2008.10643309.
[27] Y. C. Hsieh et al., “Stabilities study of the current agriculture use UAV and future design,” Proc. 4th IEEE Int. Conf. Appl. Syst. Innov. 2018, ICASI 2018, pp. 746–749, 2018, DOI:10.1109/ICASI.2018.8394367.
[28] K. Kuru, D. Ansell, W. Khan, and H. Yetgin, “Analysis and Optimization of Unmanned Aerial Vehicle Swarms in Logistics: An Intelligent Delivery Platform,” IEEE Access, vol. 7, no. c, pp. 15804–15831, 2019, DOI:10.1109/ACCESS.2019.2892716.
[29] J. Lee et al., “A mission management system for complex aerial logistics by multiple unmanned aerial vehicles in MBZIRC 2017,” J. F. Robot., vol. 36, no. 5, pp. 919–939, 2019, DOI:10.1002/rob.21860.
[30] H. Ni, X. Deng, B. Gong, and P. Wang, “Design of regional logistics system based on unmanned aerial vehicle,” Proc. 2018 IEEE 7th Data Driven Control Learn. Syst. Conf. DDCLS 2018, pp. 1045–1051, 2018, DOI:10.1109/DDCLS.2018.8515965.
[31] C. Sutheerakul, N. Kronprasert, M. Kaewmoracharoen, and P. Pichayapan, “Application of Unmanned Aerial Vehicles to Pedestrian Traffic Monitoring and Management for Shopping Streets,” Transp. Res. Procedia, vol. 25, pp. 1717–1734, 2017, DOI:10.1016/j.trpro.2017.05.131.
[32] M. Golabi, S. M. Shavarani, and G. Izbirak, “An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran earthquake,” Nat. Hazards, vol. 87, no. 3, pp. 1545–1565, 2017, DOI:10.1007/s11069-017-2832-4.
[33] A. Vehicles, “Current and future UAV military users and applications,” Air Sp. Eur., vol. 1, no. 5–6, pp. 51–58, 1999, DOI:10.1016/s1290-0958(00)88871-1.
[34] M. A. Ma’Sum et al., “Simulation of intelligent Unmanned Aerial Vehicle (UAV) for military surveillance,” 2013 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2013, pp. 161–166, 2013, DOI:10.1109/ICACSIS.2013.6761569.
[35] T. Tozer, D. Grace, J. Thompson, and P. Baynham, “UAVs and HAPs - Potential convergence for military communications,” IEE Colloq., no. 24, pp. 117–122, 2000, DOI:10.1049/ic:20000130.
[36] M. Zhang, H. Li, G. Xia, W. Zhao, S. Ren, and C. Wang, “Research on the Application of Deep Learning Target Detection of Engineering Vehicles in the Patrol and Inspection for Military Optical Cable Lines by UAV,” Proc. - 2018 11th Int. Symp. Comput. Intell. Des. Isc. 2018, vol. 1, pp. 97–101, 2018, DOI:10.1109/ISCID.2018.00029.
[37] S. J. Levulis, P. R. DeLucia, and S. Y. Kim, “Effects of Touch, Voice, and Multimodal Input, and Task Load on Multiple-UAV Monitoring Performance During Simulated Manned-Unmanned Teaming in a Military Helicopter,” Hum. Factors, vol. 60, no. 8, pp. 1117–1129, 2018, DOI:10.1177/0018720818788995.
[38] D. Orfanus, E. P. De Freitas, and F. Eliassen, “Self-Organization as a Supporting Paradigm for Military UAV Relay Networks,” IEEE Commun. Lett., vol. 20, no. 4, pp. 804–807, 2016, DOI:10.1109/LCOMM.2016.2524405.
[39] J. E. Márquez Díaz, “Seguridad metropolitana mediante el uso coordinado de Drones,” Ing. USBMed, vol. 9, no. 1, p. 39, 2018, DOI:10.21500/20275846.3299.
[40] R. Kuntz Rangel, J. L. Freitas, and V. Antonio Rodrigues, “Development of a Multipurpose Hydro Environmental Tool using Swarms, UAV and USV,” IEEE Aerosp. Conf. Proc., vol. 2019-March, 2019, DOI:10.1109/AERO.2019.8741624.
[41] T. Arnold, M. De Biasio, A. Fritz, and R. Leitner, “UAV-based measurement of vegetation indices for environmental monitoring,” Proc. Int. Conf. Sens. Technol. ICST, pp. 704–707, 2013, DOI:10.1109/ICSensT.2013.6727744.
[42] M. A. Boon, A. P. Drijfhout, and S. Tesfamichael, “Comparison of a fixed-wing and multi-rotor UAV for environmental mapping applications: A case study,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 42, no. 2W6, pp. 47–54, 2017, DOI:10.5194/isprs-archives-XLII-2-W6-47-2017.
[43] Y. Lu, D. Macias, Z. S. Dean, N. R. Kreger, and P. K. Wong, “A UAV-Mounted Whole Cell Biosensor System for Environmental Monitoring Applications,” IEEE Trans. Nanobioscience, vol. 14, no. 8, pp. 811–817, 2015, DOI:10.1109/TNB.2015.2478481.
[44] H. Doi et al., “Water sampling for environmental DNA surveys by using an unmanned aerial vehicle,” Limnol. Oceanogr. Methods, vol. 15, no. 11, pp. 939–944, 2017, DOI:10.1002/lom3.10214.
[45] K. F. Flynn and S. C. Chapra, “Remote sensing of submerged aquatic vegetation in a shallow non-turbid river using an unmanned aerial vehicle,” Remote Sens., vol. 6, no. 12, pp. 12815–12836, 2014, DOI:10.3390/rs61212815.
[46] J. Witczuk, S. Pagacz, A. Zmarz, and M. Cypel, “Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests - preliminary results,” Int. J. Remote Sens., vol. 39, no. 15–16, pp. 5504–5521, 2018, DOI:10.1080/01431161.2017.1390621.
[47] G. Greco, C. Lucianaz, S. Bertoldo, and M. Allegretti, “Localization of RFID tags for environmental monitoring using UAV,” 2015 IEEE 1st Int. Forum Res. Technol. Soc. Ind. RTSI 2015 - Proc., pp. 480–483, 2015, DOI:10.1109/RTSI.2015.7325144.
[48] R. Woellner and T. C. Wagner, “Saving species, time and money: Application of unmanned aerial vehicles (UAVs) for monitoring of an endangered alpine river specialist in a small nature reserve,” Biol. Conserv., vol. 233, no. October 2018, pp. 162–175, 2019, DOI:10.1016/j.biocon.2019.02.037.
[49] L. Mead and M. Arthur, “Environmental condition in British moorlands: quantifying the life cycle of Calluna vulgaris using UAV aerial imagery,” Int. J. Remote Sens., vol. 41, no. 2, pp. 573–583, 2020, DOI:10.1080/2150704X.2019.1646931.
[50] J. N. Hird et al., “Use of unmanned aerial vehicles for monitoring recovery of forest vegetation on petroleum well sites,” Remote Sens., vol. 9, no. 5, 2017, DOI:10.3390/rs9050413.
[51] S. Jayathunga, T. Owari, and S. Tsuyuki, “The use of fixed–wing UAV photogrammetry with LiDAR DTM to estimate merchantable volume and carbon stock in living biomass over a mixed conifer–broadleaf forest,” Int. J. Appl. Earth Obs. Geoinf., vol. 73, no. August, pp. 767–777, 2018, DOI:10.1016/j.jag.2018.08.017.
[52] V. Otero et al., “Managing mangrove forests from the sky: Forest inventory using field data and Unmanned Aerial Vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, peninsular Malaysia,” Forest Ecology and Management, vol. 411. pp. 35–45, 2018, DOI:10.1016/j.foreco.2017.12.049.
[53] K. M. Fornace, C. J. Drakeley, T. William, F. Espino, and J. Cox, “Mapping infectious disease landscapes: Unmanned aerial vehicles and epidemiology,” Trends Parasitol., vol. 30, no. 11, pp. 514–519, 2014, DOI:10.1016/j.pt.2014.09.001.
[54] D. Benavente, “Semi-expendable Unmanned Aerial Vehicle for forest fire suppression,” WIT Trans. Ecol. Environ., vol. 137, pp. 143–148, 2010, DOI:10.2495/FIVA100131.
[55] V. Sherstjuk, M. Zharikova, and I. Sokol, “Forest Fire Fighting Using Heterogeneous Ensemble of Unmanned Aerial Vehicles,” 2019 IEEE 5th Int. Conf. Actual Probl. Unmanned Aer. Veh. Dev. APUAVD 2019 - Proc., pp. 218–223, 2019, DOI:10.1109/APUAVD47061.2019.8943826.
[56] M. N. Saadat and M. N. Husen, “An application framework for forest fire and haze detection with data acquisition using unmanned aerial vehicle,” ACM Int. Conf. Proceeding Ser., 2018, DOI:10.1145/3164541.3164624.
[57] M. Caprioli, R. Trizzino, F. Mazzone, and M. Scarano, “Experiences of uav surveys applied to environmental risk management,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 2016-Janua, no. July, pp. 797–801, 2016, DOI:10.5194/isprsarchives-XLI-B1-797-2016.
[58] J. Fernández-Hernandez, D. González-Aguilera, P. Rodríguez-Gonzálvez, and J. Mancera-Taboada, “Image-Based Modelling from Unmanned Aerial Vehicle (UAV) Photogrammetry: An Effective, Low-Cost Tool for Archaeological Applications,” Archaeometry, vol. 57, no. 1, pp. 128–145, 2015, DOI:10.1111/arcm.12078.
[59] A. M. Tomczyk, M. W. Ewertowski, M. Stawska, and G. Rachlewicz, “Detailed alluvial fan geomorphology in a high-arctic periglacial environment, Svalbard: application of unmanned aerial vehicle (UAV) surveys,” J. Maps, vol. 15, no. 2, pp. 460–473, 2019, DOI:10.1080/17445647.2019.1611498.
[60] S. D’Oleire-Oltmanns, I. Marzolff, K. D. Peter, and J. B. Ries, “Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco,” Remote Sens., vol. 4, no. 11, pp. 3390–3416, 2012, DOI:10.3390/rs4113390.
[61] A. Y. M. Lin, A. Novo, S. Har-Noy, N. D. Ricklin, and K. Stamatiou, “Combining GeoEye-1 Satellite Remote Sensing, UAV Aerial Imaging, and Geophysical Surveys in Anomaly Detection Applied to Archaeology,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 4, no. 4, pp. 870–876, 2011, DOI:10.1109/JSTARS.2011.2143696.
[62] M. Dubbini, L. I. Curzio, and A. Campedelli, “Digital elevation models from unmanned aerial vehicle surveys for archaeological interpretation of terrain anomalies: Case study of the Roman castrum of Burnum (Croatia),” J. Archaeol. Sci. Reports, vol. 8, pp. 121–134, 2016, DOI:10.1016/j.jasrep.2016.05.054.
[63] J. F. Calleja et al., “Detection of buried archaeological remains with the combined use of satellite multispectral data and UAV data,” Int. J. Appl. Earth Obs. Geoinf., vol. 73, no. July, pp. 555–573, 2018, DOI:10.1016/j.jag.2018.07.023.
[64] K. G. Nikolakopoulos, K. Soura, I. K. Koukouvelas, and N. G. Argyropoulos, “UAV vs classical aerial photogrammetry for archaeological studies,” J. Archaeol. Sci. Reports, vol. 14, pp. 758–773, 2017, DOI:10.1016/j.jasrep.2016.09.004.
[65] J. Fernández-Lozano and G. Gutiérrez-Alonso, “Improving archaeological prospection using localized UAVs assisted photogrammetry: An example from the Roman Gold District of the Eria River Valley (NW Spain),” Journal of Archaeological Science: Reports, vol. 5. pp. 509–520, 2016, DOI:10.1016/j.jasrep.2016.01.007.
[66] A. A. Doshi, A. J. Postula, A. Fletcher, and S. P. N. Singh, “Development of micro-UAV with integrated motion planning for open-cut mining surveillance,” Microprocess. Microsyst., vol. 39, no. 8, pp. 829–835, 2015, DOI:10.1016/j.micpro.2015.07.008.
[67] L. Ge, X. Li, and A. H. M. Ng, “UAV for mining applications: A case study at an open-cut mine and a longwall mine in New South Wales, Australia,” Int. Geosci. Remote Sens. Symp., vol. 2016-Novem, no. 1, pp. 5422–5425, 2016, DOI:10.1109/IGARSS.2016.7730412.
[68] F. Li, A. Qian, G. Sun, and Q. Wang, “Estimation of Annual CO 2 Emission from Coal Fires in Majiliang Mine, Datong, Northen China Using UAVs Thermal Infrared Remote Sensing Technology,” 5th Int. Work. Earth Obs. Remote Sens. Appl. EORSA 2018 - Proc., pp. 1–4, 2018, DOI:10.1109/EORSA.2018.8598600.
[69] Y. Fang, Z. Hu, L. Xu, A. Wong, and D. A. Clausi, “Estimation Of Iron Concentration In Soil Of A Mining Area From Uav-Based Hyperspectral Imagery,” in 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2019, pp. 1–5, DOI:10.1109/WHISPERS.2019.8920973.
[70] E. Isokangas, C. Davids, K. Kujala, A. Rauhala, A. K. Ronkanen, and P. M. Rossi, “Combining unmanned aerial vehicle-based remote sensing and stable water isotope analysis to monitor treatment peatlands of mining areas,” Ecol. Eng., vol. 133, no. May, pp. 137–147, 2019, DOI:10.1016/j.ecoleng.2019.04.024.
[71] A. Ranjan, B. Panigrahi, H. B. Sahu, and P. Misra, “SkyHelp: Leveraging UAVs for emergency communication support in deep open pit mines,” 2018 10th Int. Conf. Commun. Syst. Networks, COMSNETS 2018, vol. 2018-Janua, no. 1, pp. 546–548, 2018, DOI:10.1109/COMSNETS.2018.8328269.
[72] O. G. Ajayi, M. Palmer, and A. A. Salubi, “Modelling farmland topography for suitable site selection of dam construction using unmanned aerial vehicle (UAV) photogrammetry,” Remote Sens. Appl. Soc. Environ., vol. 11, no. July, pp. 220–230, 2018, DOI:10.1016/j.rsase.2018.07.007.
[73] K. N. Tahar, A. Ahmad, W. A. A. Wan Mohd Akib, and W. M. N. Wan Mohd, “Aerial mapping using autonomous fixed-wing unmanned aerial vehicle,” Proc. - 2012 IEEE 8th Int. Colloq. Signal Process. Its Appl. CSPA 2012, pp. 164–168, 2012, DOI:10.1109/CSPA.2012.6194711.
[74] T. C. Su, “Multispectral sensors carried on unmanned aerial vehicle (UAV) for trophic state mapping of the small reservoir in Kinmen, Taiwan,” Int. Geosci. Remote Sens. Symp., vol. 2015-Novem, pp. 5348–5351, 2015, DOI:10.1109/IGARSS.2015.7327043.
[75] O. Wigmore, B. Mark, J. McKenzie, M. Baraer, and L. Lautz, “Sub-metre mapping of surface soil moisture in proglacial valleys of the tropical Andes using a multispectral unmanned aerial vehicle,” Remote Sens. Environ., vol. 222, no. January 2018, pp. 104–118, 2019, DOI:10.1016/j.rse.2018.12.024.
[76] S. Siebert and J. Teizer, “Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system,” Autom. Constr., vol. 41, pp. 1–14, 2014, DOI:10.1016/j.autcon.2014.01.004.
[77] F. H. Yeh, C. J. Huang, J. Y. Han, and L. Ge, “Modeling Slope Topography Using Unmanned Aerial Vehicle Image Technique,” MATEC Web Conf., vol. 147, pp. 1–6, 2018, DOI:10.1051/matecconf/201814707002.
[78] F. Mancini, M. Dubbini, M. Gattelli, F. Stecchi, S. Fabbri, and G. Gabbianelli, “Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments,” Remote Sens., vol. 5, no. 12, pp. 6880–6898, 2013, DOI:10.3390/rs5126880.
[79] M. Yu, Y. Huang, J. Zhou, and L. Mao, “Modeling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion,” Environ. Earth Sci., vol. 76, no. 15, 2017, DOI:10.1007/s12665-017-6860-x.
[80] H. Bi, W. Zheng, Z. Ren, J. Zeng, and J. Yu, “Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry,” Int. J. Remote Sens., vol. 38, no. 8–10, pp. 2495–2510, 2017, DOI:10.1080/01431161.2016.1249308.
[81] U. Niethammer, M. R. James, S. Rothmund, J. Travelletti, and M. Joswig, “UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results,” Eng. Geol., vol. 128, pp. 2–11, 2012, DOI:10.1016/j.enggeo.2011.03.012.
[82] S. J. Hong, Y. Han, S. Y. Kim, A. Y. Lee, and G. Kim, “Application of deep-learning methods to bird detection using unmanned aerial vehicle imagery,” Sensors (Switzerland), vol. 19, no. 7, pp. 1–16, 2019, DOI:10.3390/s19071651.
[83] P. J. Zarco-Tejada, L. Suárez, J. A. J. Berni, E. Fereres, J. A. J. Berni, and P. J. Zarco-Tejada, “Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle Improved Evapotranspiration using Unmanned Aerial Vehicles View project High throughput and remote trait measurement View project Thermal and Nar,” Ieee Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 722–738, 2009, DOI:10.1109/TGRS.2008.2010457.
[84] V. Trukhachev, S. Oliinyk, T. Lesnyak, and N. Zlyidnev, “Application of unmanned aerial vehicles for remote estimation of pasture fertility while growing Dzhalginsky merino sheep,” Eng. Rural Dev., vol. 18, no. 1, pp. 1673–1679, 2019, DOI:10.22616/ERDev2019.18.N465.
[85] F. Nex and F. Remondino, “UAV for 3D mapping applications: A review,” Appl. Geomatics, vol. 6, no. 1, pp. 1–15, 2014, DOI:10.1007/s12518-013-0120-x.
[86] S. S. Esfahlani, “Mixed reality and remote sensing application of unmanned aerial vehicle in fire and smoke detection,” J. Ind. Inf. Integr., vol. 15, no. November 2018, pp. 42–49, 2019, DOI:10.1016/j.jii.2019.04.006.
[87] C. Liu, X. Liu, X. Peng, E. Wang, and S. Wang, “Application of 3D-DDA integrated with unmanned aerial vehicle–laser scanner (UAV-LS) photogrammetry for stability analysis of a blocky rock mass slope,” Landslides, vol. 16, no. 9, pp. 1645–1661, 2019, DOI:10.1007/s10346-019-01196-6.
[88] R. Sugiura, N. Noguchi, and K. Ishii, “Remote-sensing technology for vegetation monitoring using an unmanned helicopter,” Biosyst. Eng., vol. 90, no. 4, pp. 369–379, 2005, DOI:10.1016/j.biosystemseng.2004.12.011.
[89] T. C. Su and H. T. Chou, “Application of multispectral sensors carried on unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: A case study of Tain-Pu reservoir in Kinmen, Taiwan,” Remote Sens., vol. 7, no. 8, pp. 10078–10097, 2015, DOI:10.3390/rs70810078.
[90] D. G. Schmale III, B. R. Dingus, and C. Reinholtz, “Development and application of an autonomous unmanned aerial vehicle for precise aerobiological sampling above agricultural fields,” J. F. Robot., vol. 25, no. 3, pp. 133–147, Mar. 2008, DOI:10.1002/rob.20232.
[91] M. Piras et al., “Detailed geological mapping in mountain areas using an unmanned aerial vehicle: application to the Rodoretto Valley, NW Italian Alps,” Geomatics, Nat. Hazards Risk, vol. 8, no. 1, pp. 137–149, 2017, DOI:10.1080/19475705.2016.1225228.
[92] T. H. Nasution, I. Siregar, and M. Yasir, “UAV telemetry communications using ZigBee protocol,” J. Phys. Conf. Ser., vol. 914, no. 1, 2017, DOI:10.1088/1742-6596/914/1/012001.
Referencias
[2] L. D. M. Lam, A. Tang, and J. Grundy, “Heuristics-based indoor positioning systems: a systematic literature review,” J. Locat. Based Serv., vol. 10, no. 3, pp. 178–211, 2016, DOI:10.1080/17489725.2016.1232842.
[3] C. Zhang and J. M. Kovacs, “The application of small unmanned aerial systems for precision agriculture: A review,” Precis. Agric., vol. 13, no. 6, pp. 693–712, 2012, DOI:10.1007/s11119-012-9274-5.
[4] A. C. Watts, V. G. Ambrosia, and E. A. Hinkley, “Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use,” Remote Sens., vol. 4, no. 6, pp. 1671–1692, 2012, DOI:10.3390/rs4061671.
[5] G. Pajares, “Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs),” Photogramm. Eng. Remote Sensing, vol. 81, no. 4, pp. 281–329, 2015, DOI:10.14358/PERS.81.4.281.
[6] S. Hayat, E. Yanmaz, and R. Muzaffar, “Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint,” IEEE Commun. Surv. Tutorials, vol. 18, no. 4, pp. 2624–2661, 2016, DOI:10.1109/COMST.2016.2560343.
[7] D. Popescu, F. Stoican, L. Ichim, G. Stamatescu, and C. Dragana, “Collaborative UAV-WSN system for data acquisition and processing in agriculture,” Proc. 2019 10th IEEE Int. Conf. Intell. Data Acquis. Adv. Comput. Syst. Technol. Appl. IDAACS 2019, vol. 1, pp. 519–524, 2019, DOI:10.1109/IDAACS.2019.8924424.
[8] T. Niedzielski, “Applications of Unmanned Aerial Vehicles in Geosciences: Introduction,” no. November, pp. 1–4, 2019, DOI:10.1007/978-3-030-03171-8_1.
[9] P. V. M. Maia, R. M. Santos, J. R. P. Vaz, M. O. Silva, and E. F. Lins, “Experimental study of three different airfoils applied to diffuser-augmented wind turbines,” J. Urban Environ. Eng., vol. 12, no. 1, pp. 147–153, 2018, DOI:10.4090/juee.
[10] D. Lopez and Joana Andrea, “Marketing en Redes Sociales Online como herramienta de marketing Emprendedor,” Univeridad Nacional de Colombia, 2016.
[11] J. C. Marín, S. Robledo, and N. D. Duque, “Marketing emprendedor: una perspectiva cronologica utilizando tree of science,” Civilizar Empres. y Econ., vol. 13, no. 1, pp. 113–123, 2017.
[12] J. Toro and M. D. P. Rodríguez, “Formación en ética en las organizaciones: Revisión de la literatura,” Inf. Tecnol., vol. 28, no. 2, pp. 167–180, 2017, DOI:10.4067/S0718-07642017000200018.
[13] C. Manterola, P. Astudillo, E. Arias, and N. Claros, “Revisiones sistemáticas de la literatura. Qué se debe saber acerca de ellas,” Cir. Esp., vol. 91, no. 3, pp. 149–155, 2013, DOI:10.1016/j.ciresp.2011.07.009.
[14] E. L. García Alba, “Características y utilidad de las Revisiones Sistemáticas o Meta-análisis,” Rev. Científica Cienc. Médica, vol. 16, no. 2, pp. 4–5, 2013.
[15] J. Primicerio et al., “A flexible unmanned aerial vehicle for precision agriculture,” Precis. Agric., vol. 13, no. 4, pp. 517–523, 2012, DOI:10.1007/s11119-012-9257-6.
[16] P. Hu, W. Guo, S. C. Chapman, Y. Guo, and B. Zheng, “Pixel size of aerial imagery constrains the applications of unmanned aerial vehicle in crop breeding,” ISPRS J. Photogramm. Remote Sens., vol. 154, no. June 2018, pp. 1–9, 2019, DOI:10.1016/j.isprsjprs.2019.05.008.
[17] N. Chebrolu, T. Labe, and C. Stachniss, “Robust long-term registration of UAV images of crop fields for precision agriculture,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3097–3104, 2018, DOI:10.1109/LRA.2018.2849603.
[18] P. Katsigiannis, L. Misopolinos, V. Liakopoulos, T. K. Alexandridis, and G. Zalidis, “An autonomous multi-sensor UAV system for reduced-input precision agriculture applications,” 24th Mediterr. Conf. Control Autom. MED 2016, pp. 60–64, 2016, DOI:10.1109/MED.2016.7535938.
[19] A. M. Abuleil, G. W. Taylor, and M. Moussa, “An Integrated System for Mapping Red Clover Ground Cover Using Unmanned Aerial Vehicles: A Case Study in Precision Agriculture,” Proc. -2015 12th Conf. Comput. Robot Vision, CRV 2015, pp. 277–284, 2015, DOI:10.1109/CRV.2015.43.
[20] S. Bhandari, A. Raheja, R. L. Green, and D. Do, “Towards collaboration between unmanned aerial and ground vehicles for precision agriculture,” Auton. Air Gr. Sens. Syst. Agric. Optim. Phenotyping II, vol. 10218, p. 1021806, 2017, DOI:10.1117/12.2262049.
[21] V. Lukas et al., “The combination of UAV survey and Landsat imagery for monitoring of crop vigor in precision agriculture,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 41, no. July, pp. 953–957, 2016, DOI:10.5194/isprsarchives-XLI-B8-953-2016.
[22] A. Mateen and Q. Zhu, “Weed detection in wheat crop using UAV for precision agriculture,” Pakistan J. Agric. Sci., vol. 56, no. 3, pp. 809–817, 2019, DOI:10.21162/PAKJAS/19.8116.
[23] L. Comba, A. Biglia, D. Ricauda Aimonino, and P. Gay, “Unsupervised detection of vineyards by 3D point-cloud UAV photogrammetry for precision agriculture,” Comput. Electron. Agric., vol. 155, no. October, pp. 84–95, 2018, DOI:10.1016/j.compag.2018.10.005.
[24] X. Q. Zhang et al., “Application of Multi-rotor Unmanned Aerial Vehicle Application in Management of Stem Borer (Lepidoptera) in Sugarcane,” Sugar Tech, vol. 21, no. 5, pp. 847–852, 2019, DOI:10.1007/s12355-018-0695-y.
[25] P. Venkata Subba Rao and S. R. Gorantla, “Design and Modelling of anAffordable UAV Based Pesticide Sprayer in Agriculture Applications,” 5th Int. Conf. Electr. Energy Syst. ICEES 2019, vol. 360, no. February, pp. 1–4, 2019, DOI:10.1109/ICEES.2019.8719237.
[26] J. Yue, T. Lei, C. Li, and J. Zhu, “The Application of Unmanned Aerial Vehicle Remote Sensing in Quickly Monitoring Crop Pests,” Intell. Autom. Soft Comput., vol. 18, no. 8, pp. 1043–1052, 2012, DOI:10.1080/10798587.2008.10643309.
[27] Y. C. Hsieh et al., “Stabilities study of the current agriculture use UAV and future design,” Proc. 4th IEEE Int. Conf. Appl. Syst. Innov. 2018, ICASI 2018, pp. 746–749, 2018, DOI:10.1109/ICASI.2018.8394367.
[28] K. Kuru, D. Ansell, W. Khan, and H. Yetgin, “Analysis and Optimization of Unmanned Aerial Vehicle Swarms in Logistics: An Intelligent Delivery Platform,” IEEE Access, vol. 7, no. c, pp. 15804–15831, 2019, DOI:10.1109/ACCESS.2019.2892716.
[29] J. Lee et al., “A mission management system for complex aerial logistics by multiple unmanned aerial vehicles in MBZIRC 2017,” J. F. Robot., vol. 36, no. 5, pp. 919–939, 2019, DOI:10.1002/rob.21860.
[30] H. Ni, X. Deng, B. Gong, and P. Wang, “Design of regional logistics system based on unmanned aerial vehicle,” Proc. 2018 IEEE 7th Data Driven Control Learn. Syst. Conf. DDCLS 2018, pp. 1045–1051, 2018, DOI:10.1109/DDCLS.2018.8515965.
[31] C. Sutheerakul, N. Kronprasert, M. Kaewmoracharoen, and P. Pichayapan, “Application of Unmanned Aerial Vehicles to Pedestrian Traffic Monitoring and Management for Shopping Streets,” Transp. Res. Procedia, vol. 25, pp. 1717–1734, 2017, DOI:10.1016/j.trpro.2017.05.131.
[32] M. Golabi, S. M. Shavarani, and G. Izbirak, “An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran earthquake,” Nat. Hazards, vol. 87, no. 3, pp. 1545–1565, 2017, DOI:10.1007/s11069-017-2832-4.
[33] A. Vehicles, “Current and future UAV military users and applications,” Air Sp. Eur., vol. 1, no. 5–6, pp. 51–58, 1999, DOI:10.1016/s1290-0958(00)88871-1.
[34] M. A. Ma’Sum et al., “Simulation of intelligent Unmanned Aerial Vehicle (UAV) for military surveillance,” 2013 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2013, pp. 161–166, 2013, DOI:10.1109/ICACSIS.2013.6761569.
[35] T. Tozer, D. Grace, J. Thompson, and P. Baynham, “UAVs and HAPs - Potential convergence for military communications,” IEE Colloq., no. 24, pp. 117–122, 2000, DOI:10.1049/ic:20000130.
[36] M. Zhang, H. Li, G. Xia, W. Zhao, S. Ren, and C. Wang, “Research on the Application of Deep Learning Target Detection of Engineering Vehicles in the Patrol and Inspection for Military Optical Cable Lines by UAV,” Proc. - 2018 11th Int. Symp. Comput. Intell. Des. Isc. 2018, vol. 1, pp. 97–101, 2018, DOI:10.1109/ISCID.2018.00029.
[37] S. J. Levulis, P. R. DeLucia, and S. Y. Kim, “Effects of Touch, Voice, and Multimodal Input, and Task Load on Multiple-UAV Monitoring Performance During Simulated Manned-Unmanned Teaming in a Military Helicopter,” Hum. Factors, vol. 60, no. 8, pp. 1117–1129, 2018, DOI:10.1177/0018720818788995.
[38] D. Orfanus, E. P. De Freitas, and F. Eliassen, “Self-Organization as a Supporting Paradigm for Military UAV Relay Networks,” IEEE Commun. Lett., vol. 20, no. 4, pp. 804–807, 2016, DOI:10.1109/LCOMM.2016.2524405.
[39] J. E. Márquez Díaz, “Seguridad metropolitana mediante el uso coordinado de Drones,” Ing. USBMed, vol. 9, no. 1, p. 39, 2018, DOI:10.21500/20275846.3299.
[40] R. Kuntz Rangel, J. L. Freitas, and V. Antonio Rodrigues, “Development of a Multipurpose Hydro Environmental Tool using Swarms, UAV and USV,” IEEE Aerosp. Conf. Proc., vol. 2019-March, 2019, DOI:10.1109/AERO.2019.8741624.
[41] T. Arnold, M. De Biasio, A. Fritz, and R. Leitner, “UAV-based measurement of vegetation indices for environmental monitoring,” Proc. Int. Conf. Sens. Technol. ICST, pp. 704–707, 2013, DOI:10.1109/ICSensT.2013.6727744.
[42] M. A. Boon, A. P. Drijfhout, and S. Tesfamichael, “Comparison of a fixed-wing and multi-rotor UAV for environmental mapping applications: A case study,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 42, no. 2W6, pp. 47–54, 2017, DOI:10.5194/isprs-archives-XLII-2-W6-47-2017.
[43] Y. Lu, D. Macias, Z. S. Dean, N. R. Kreger, and P. K. Wong, “A UAV-Mounted Whole Cell Biosensor System for Environmental Monitoring Applications,” IEEE Trans. Nanobioscience, vol. 14, no. 8, pp. 811–817, 2015, DOI:10.1109/TNB.2015.2478481.
[44] H. Doi et al., “Water sampling for environmental DNA surveys by using an unmanned aerial vehicle,” Limnol. Oceanogr. Methods, vol. 15, no. 11, pp. 939–944, 2017, DOI:10.1002/lom3.10214.
[45] K. F. Flynn and S. C. Chapra, “Remote sensing of submerged aquatic vegetation in a shallow non-turbid river using an unmanned aerial vehicle,” Remote Sens., vol. 6, no. 12, pp. 12815–12836, 2014, DOI:10.3390/rs61212815.
[46] J. Witczuk, S. Pagacz, A. Zmarz, and M. Cypel, “Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests - preliminary results,” Int. J. Remote Sens., vol. 39, no. 15–16, pp. 5504–5521, 2018, DOI:10.1080/01431161.2017.1390621.
[47] G. Greco, C. Lucianaz, S. Bertoldo, and M. Allegretti, “Localization of RFID tags for environmental monitoring using UAV,” 2015 IEEE 1st Int. Forum Res. Technol. Soc. Ind. RTSI 2015 - Proc., pp. 480–483, 2015, DOI:10.1109/RTSI.2015.7325144.
[48] R. Woellner and T. C. Wagner, “Saving species, time and money: Application of unmanned aerial vehicles (UAVs) for monitoring of an endangered alpine river specialist in a small nature reserve,” Biol. Conserv., vol. 233, no. October 2018, pp. 162–175, 2019, DOI:10.1016/j.biocon.2019.02.037.
[49] L. Mead and M. Arthur, “Environmental condition in British moorlands: quantifying the life cycle of Calluna vulgaris using UAV aerial imagery,” Int. J. Remote Sens., vol. 41, no. 2, pp. 573–583, 2020, DOI:10.1080/2150704X.2019.1646931.
[50] J. N. Hird et al., “Use of unmanned aerial vehicles for monitoring recovery of forest vegetation on petroleum well sites,” Remote Sens., vol. 9, no. 5, 2017, DOI:10.3390/rs9050413.
[51] S. Jayathunga, T. Owari, and S. Tsuyuki, “The use of fixed–wing UAV photogrammetry with LiDAR DTM to estimate merchantable volume and carbon stock in living biomass over a mixed conifer–broadleaf forest,” Int. J. Appl. Earth Obs. Geoinf., vol. 73, no. August, pp. 767–777, 2018, DOI:10.1016/j.jag.2018.08.017.
[52] V. Otero et al., “Managing mangrove forests from the sky: Forest inventory using field data and Unmanned Aerial Vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, peninsular Malaysia,” Forest Ecology and Management, vol. 411. pp. 35–45, 2018, DOI:10.1016/j.foreco.2017.12.049.
[53] K. M. Fornace, C. J. Drakeley, T. William, F. Espino, and J. Cox, “Mapping infectious disease landscapes: Unmanned aerial vehicles and epidemiology,” Trends Parasitol., vol. 30, no. 11, pp. 514–519, 2014, DOI:10.1016/j.pt.2014.09.001.
[54] D. Benavente, “Semi-expendable Unmanned Aerial Vehicle for forest fire suppression,” WIT Trans. Ecol. Environ., vol. 137, pp. 143–148, 2010, DOI:10.2495/FIVA100131.
[55] V. Sherstjuk, M. Zharikova, and I. Sokol, “Forest Fire Fighting Using Heterogeneous Ensemble of Unmanned Aerial Vehicles,” 2019 IEEE 5th Int. Conf. Actual Probl. Unmanned Aer. Veh. Dev. APUAVD 2019 - Proc., pp. 218–223, 2019, DOI:10.1109/APUAVD47061.2019.8943826.
[56] M. N. Saadat and M. N. Husen, “An application framework for forest fire and haze detection with data acquisition using unmanned aerial vehicle,” ACM Int. Conf. Proceeding Ser., 2018, DOI:10.1145/3164541.3164624.
[57] M. Caprioli, R. Trizzino, F. Mazzone, and M. Scarano, “Experiences of uav surveys applied to environmental risk management,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 2016-Janua, no. July, pp. 797–801, 2016, DOI:10.5194/isprsarchives-XLI-B1-797-2016.
[58] J. Fernández-Hernandez, D. González-Aguilera, P. Rodríguez-Gonzálvez, and J. Mancera-Taboada, “Image-Based Modelling from Unmanned Aerial Vehicle (UAV) Photogrammetry: An Effective, Low-Cost Tool for Archaeological Applications,” Archaeometry, vol. 57, no. 1, pp. 128–145, 2015, DOI:10.1111/arcm.12078.
[59] A. M. Tomczyk, M. W. Ewertowski, M. Stawska, and G. Rachlewicz, “Detailed alluvial fan geomorphology in a high-arctic periglacial environment, Svalbard: application of unmanned aerial vehicle (UAV) surveys,” J. Maps, vol. 15, no. 2, pp. 460–473, 2019, DOI:10.1080/17445647.2019.1611498.
[60] S. D’Oleire-Oltmanns, I. Marzolff, K. D. Peter, and J. B. Ries, “Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco,” Remote Sens., vol. 4, no. 11, pp. 3390–3416, 2012, DOI:10.3390/rs4113390.
[61] A. Y. M. Lin, A. Novo, S. Har-Noy, N. D. Ricklin, and K. Stamatiou, “Combining GeoEye-1 Satellite Remote Sensing, UAV Aerial Imaging, and Geophysical Surveys in Anomaly Detection Applied to Archaeology,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 4, no. 4, pp. 870–876, 2011, DOI:10.1109/JSTARS.2011.2143696.
[62] M. Dubbini, L. I. Curzio, and A. Campedelli, “Digital elevation models from unmanned aerial vehicle surveys for archaeological interpretation of terrain anomalies: Case study of the Roman castrum of Burnum (Croatia),” J. Archaeol. Sci. Reports, vol. 8, pp. 121–134, 2016, DOI:10.1016/j.jasrep.2016.05.054.
[63] J. F. Calleja et al., “Detection of buried archaeological remains with the combined use of satellite multispectral data and UAV data,” Int. J. Appl. Earth Obs. Geoinf., vol. 73, no. July, pp. 555–573, 2018, DOI:10.1016/j.jag.2018.07.023.
[64] K. G. Nikolakopoulos, K. Soura, I. K. Koukouvelas, and N. G. Argyropoulos, “UAV vs classical aerial photogrammetry for archaeological studies,” J. Archaeol. Sci. Reports, vol. 14, pp. 758–773, 2017, DOI:10.1016/j.jasrep.2016.09.004.
[65] J. Fernández-Lozano and G. Gutiérrez-Alonso, “Improving archaeological prospection using localized UAVs assisted photogrammetry: An example from the Roman Gold District of the Eria River Valley (NW Spain),” Journal of Archaeological Science: Reports, vol. 5. pp. 509–520, 2016, DOI:10.1016/j.jasrep.2016.01.007.
[66] A. A. Doshi, A. J. Postula, A. Fletcher, and S. P. N. Singh, “Development of micro-UAV with integrated motion planning for open-cut mining surveillance,” Microprocess. Microsyst., vol. 39, no. 8, pp. 829–835, 2015, DOI:10.1016/j.micpro.2015.07.008.
[67] L. Ge, X. Li, and A. H. M. Ng, “UAV for mining applications: A case study at an open-cut mine and a longwall mine in New South Wales, Australia,” Int. Geosci. Remote Sens. Symp., vol. 2016-Novem, no. 1, pp. 5422–5425, 2016, DOI:10.1109/IGARSS.2016.7730412.
[68] F. Li, A. Qian, G. Sun, and Q. Wang, “Estimation of Annual CO 2 Emission from Coal Fires in Majiliang Mine, Datong, Northen China Using UAVs Thermal Infrared Remote Sensing Technology,” 5th Int. Work. Earth Obs. Remote Sens. Appl. EORSA 2018 - Proc., pp. 1–4, 2018, DOI:10.1109/EORSA.2018.8598600.
[69] Y. Fang, Z. Hu, L. Xu, A. Wong, and D. A. Clausi, “Estimation Of Iron Concentration In Soil Of A Mining Area From Uav-Based Hyperspectral Imagery,” in 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2019, pp. 1–5, DOI:10.1109/WHISPERS.2019.8920973.
[70] E. Isokangas, C. Davids, K. Kujala, A. Rauhala, A. K. Ronkanen, and P. M. Rossi, “Combining unmanned aerial vehicle-based remote sensing and stable water isotope analysis to monitor treatment peatlands of mining areas,” Ecol. Eng., vol. 133, no. May, pp. 137–147, 2019, DOI:10.1016/j.ecoleng.2019.04.024.
[71] A. Ranjan, B. Panigrahi, H. B. Sahu, and P. Misra, “SkyHelp: Leveraging UAVs for emergency communication support in deep open pit mines,” 2018 10th Int. Conf. Commun. Syst. Networks, COMSNETS 2018, vol. 2018-Janua, no. 1, pp. 546–548, 2018, DOI:10.1109/COMSNETS.2018.8328269.
[72] O. G. Ajayi, M. Palmer, and A. A. Salubi, “Modelling farmland topography for suitable site selection of dam construction using unmanned aerial vehicle (UAV) photogrammetry,” Remote Sens. Appl. Soc. Environ., vol. 11, no. July, pp. 220–230, 2018, DOI:10.1016/j.rsase.2018.07.007.
[73] K. N. Tahar, A. Ahmad, W. A. A. Wan Mohd Akib, and W. M. N. Wan Mohd, “Aerial mapping using autonomous fixed-wing unmanned aerial vehicle,” Proc. - 2012 IEEE 8th Int. Colloq. Signal Process. Its Appl. CSPA 2012, pp. 164–168, 2012, DOI:10.1109/CSPA.2012.6194711.
[74] T. C. Su, “Multispectral sensors carried on unmanned aerial vehicle (UAV) for trophic state mapping of the small reservoir in Kinmen, Taiwan,” Int. Geosci. Remote Sens. Symp., vol. 2015-Novem, pp. 5348–5351, 2015, DOI:10.1109/IGARSS.2015.7327043.
[75] O. Wigmore, B. Mark, J. McKenzie, M. Baraer, and L. Lautz, “Sub-metre mapping of surface soil moisture in proglacial valleys of the tropical Andes using a multispectral unmanned aerial vehicle,” Remote Sens. Environ., vol. 222, no. January 2018, pp. 104–118, 2019, DOI:10.1016/j.rse.2018.12.024.
[76] S. Siebert and J. Teizer, “Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system,” Autom. Constr., vol. 41, pp. 1–14, 2014, DOI:10.1016/j.autcon.2014.01.004.
[77] F. H. Yeh, C. J. Huang, J. Y. Han, and L. Ge, “Modeling Slope Topography Using Unmanned Aerial Vehicle Image Technique,” MATEC Web Conf., vol. 147, pp. 1–6, 2018, DOI:10.1051/matecconf/201814707002.
[78] F. Mancini, M. Dubbini, M. Gattelli, F. Stecchi, S. Fabbri, and G. Gabbianelli, “Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments,” Remote Sens., vol. 5, no. 12, pp. 6880–6898, 2013, DOI:10.3390/rs5126880.
[79] M. Yu, Y. Huang, J. Zhou, and L. Mao, “Modeling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion,” Environ. Earth Sci., vol. 76, no. 15, 2017, DOI:10.1007/s12665-017-6860-x.
[80] H. Bi, W. Zheng, Z. Ren, J. Zeng, and J. Yu, “Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry,” Int. J. Remote Sens., vol. 38, no. 8–10, pp. 2495–2510, 2017, DOI:10.1080/01431161.2016.1249308.
[81] U. Niethammer, M. R. James, S. Rothmund, J. Travelletti, and M. Joswig, “UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results,” Eng. Geol., vol. 128, pp. 2–11, 2012, DOI:10.1016/j.enggeo.2011.03.012.
[82] S. J. Hong, Y. Han, S. Y. Kim, A. Y. Lee, and G. Kim, “Application of deep-learning methods to bird detection using unmanned aerial vehicle imagery,” Sensors (Switzerland), vol. 19, no. 7, pp. 1–16, 2019, DOI:10.3390/s19071651.
[83] P. J. Zarco-Tejada, L. Suárez, J. A. J. Berni, E. Fereres, J. A. J. Berni, and P. J. Zarco-Tejada, “Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle Improved Evapotranspiration using Unmanned Aerial Vehicles View project High throughput and remote trait measurement View project Thermal and Nar,” Ieee Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 722–738, 2009, DOI:10.1109/TGRS.2008.2010457.
[84] V. Trukhachev, S. Oliinyk, T. Lesnyak, and N. Zlyidnev, “Application of unmanned aerial vehicles for remote estimation of pasture fertility while growing Dzhalginsky merino sheep,” Eng. Rural Dev., vol. 18, no. 1, pp. 1673–1679, 2019, DOI:10.22616/ERDev2019.18.N465.
[85] F. Nex and F. Remondino, “UAV for 3D mapping applications: A review,” Appl. Geomatics, vol. 6, no. 1, pp. 1–15, 2014, DOI:10.1007/s12518-013-0120-x.
[86] S. S. Esfahlani, “Mixed reality and remote sensing application of unmanned aerial vehicle in fire and smoke detection,” J. Ind. Inf. Integr., vol. 15, no. November 2018, pp. 42–49, 2019, DOI:10.1016/j.jii.2019.04.006.
[87] C. Liu, X. Liu, X. Peng, E. Wang, and S. Wang, “Application of 3D-DDA integrated with unmanned aerial vehicle–laser scanner (UAV-LS) photogrammetry for stability analysis of a blocky rock mass slope,” Landslides, vol. 16, no. 9, pp. 1645–1661, 2019, DOI:10.1007/s10346-019-01196-6.
[88] R. Sugiura, N. Noguchi, and K. Ishii, “Remote-sensing technology for vegetation monitoring using an unmanned helicopter,” Biosyst. Eng., vol. 90, no. 4, pp. 369–379, 2005, DOI:10.1016/j.biosystemseng.2004.12.011.
[89] T. C. Su and H. T. Chou, “Application of multispectral sensors carried on unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: A case study of Tain-Pu reservoir in Kinmen, Taiwan,” Remote Sens., vol. 7, no. 8, pp. 10078–10097, 2015, DOI:10.3390/rs70810078.
[90] D. G. Schmale III, B. R. Dingus, and C. Reinholtz, “Development and application of an autonomous unmanned aerial vehicle for precise aerobiological sampling above agricultural fields,” J. F. Robot., vol. 25, no. 3, pp. 133–147, Mar. 2008, DOI:10.1002/rob.20232.
[91] M. Piras et al., “Detailed geological mapping in mountain areas using an unmanned aerial vehicle: application to the Rodoretto Valley, NW Italian Alps,” Geomatics, Nat. Hazards Risk, vol. 8, no. 1, pp. 137–149, 2017, DOI:10.1080/19475705.2016.1225228.
[92] T. H. Nasution, I. Siregar, and M. Yasir, “UAV telemetry communications using ZigBee protocol,” J. Phys. Conf. Ser., vol. 914, no. 1, 2017, DOI:10.1088/1742-6596/914/1/012001.