Derechos de autor 2022 Investigación e Innovación en Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Evaluación de la dinámica de agua en Hydrus-1D para tres suelos de ladera cultivados con aguacate Hass (persea americana)
Corresponding Author(s) : Kellym Libeth Lopez Amaya
Investigación e Innovación en Ingenierías,
Vol. 10 Núm. 1 (2022): Enero-Junio
Resumen
Objetivo: El estudio buscó evaluar el movimiento del agua en suelos de ladera cultivados con aguacate Hass bajo la hipótesis que la pendiente impide que la zona no saturada, que cubre la profundidad efectiva de raíces, llegue a capacidad de campo CC (-30 KPa) ante un evento de precipitación y en épocas secas alcanza valores altos de potencial mátrico, afectando la disponibilidad hídrica para la planta. Metodología: Se simuló con Hydrus-1D eventos de secado y de humedecimiento del suelo por precipitación, a partir de datos de potencial mátrico tomados con sensores de matriz granular en tres fincas comerciales de aguacate Hass, ubicadas en Roldanillo (Laurentina), Restrepo (Ponceña) y Dagua (Olival) Valle del Cauca. Resultados: se encontró que bajo los máximos eventos de precipitación en agosto de 2020, el potencial mátrico disminuye por efecto de la infiltración de agua en las tres fincas. En Laurentina, la disminución de este, alcanza los 100 cm, por debajo de -30 KPa, en Restrepo alcanza los 30 cm de profundidad con alrededor de -30 KPa y en Olival, llega hasta 75 cm, con cerca de -20 KPa. Para el evento de secado el potencial mátrico osciló entre -50 y -200 KPa. Los errores asociados de la simulación estuvieron entre 10 y 25 % con R2 entre 0.8 y 0.9 (P<0.001). Conclusiones: Se encontró que la pendiente y la textura del suelo, influencian la distribución del agua en el suelo produciendo que a los 75 cm haya un incremento en la humedad sin existir ingreso de agua por la superficie y que para suelos de textura franco arenosa, el suelo alcanza una distribución uniforme de CC cubriendo la raíz con precipitaciones altas. En épocas secas necesarias se hace necesario aplicar riego.
Palabras clave
Descargar cita
Endnote/Zotero/Mendeley (RIS)BibTeX
- Ministerio de Agricultura y Desarollo Rural (MinAgricultura), “Colombia se convierte en productor de aguacate Hass de clase mundial.” MinAgricultura, Colombia, 2019.
- C. Gutierrez, “Desde el Valle del Cauca se exporta aguacate hass al mercado norteamericano,” Gobernación del Valle del Cauca, Cali, Colombia, 17-Jun-2019.
- T. H. Skaggs, T. J. Trout, J. Šimůnek, and P. J. Shouse, “Comparison of HYDRUS-2D Simulations of Drip Irrigation with Experimental Observations,” J. Irrig. Drain. Eng., vol. 130, no. 4, pp. 304–310, 2004.
- H. Zhou and W. zhi Zhao, “Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China,” Agric. Water Manag., vol. 221, pp. 286–302, 2019.
- C. Jyotiprava Dash, A. Sarangi, D. K. Singh, A. K. Singh, and P. P. Adhikary, “Prediction of root zone water and nitrogen balance in an irrigated rice field using a simulation model,” Paddy Water Env., vol. 13, pp. 281–290, 2015.
- X. Besoain, C. Arenas, and E. S. B. A. Latorre, “Efecto del Periodo de Inundación en el Desarrollo de la Tristeza del Palto ( Persea americana ), Causada por Phytophthora cinnamomi,” Cienc. e Investig. Agrar., vol. 32, no. 2, pp. 97–103, 2005.
- G. Doupis, N. Kavroulakis, G. Psarras, and I. E. Papadakis, “Growth , photosynthetic performance and antioxidative response of ‘ Hass ’ and ‘ Fuerte ’ avocado ( Persea americana Mill .) plants grown under high soil moisture,” Photosynthetica, vol. 55, no. 4, pp. 655–663, 2017.
- R. E. Sterne, G. A. Zentmyer, and M. R. Kaufmann, “The Effect of Matric and Osmotic Potential of Soil on Phytophthora Root Disease of Persea indica Tension Plate Pressure Plate,” Ecol. Epidemiol., vol. 67, pp. 1491–1494, 1977.
- A. Tafteh and A. R. Sepaskhah, “Application of HYDRUS-1D model for simulating water and nitrate leaching from continuous and alternate furrow irrigated rapeseed and maize fields,” Agric. Water Manag., vol. 113, pp. 19– 29, 2012.
- G. Wang, J. Chen, Q. Zhou, X. Chu, and X. Zhou, “Modelling analysis of water-use efficiency of maize in Heihe River Basin,” Phys. Chem. Earth, vol. 96, pp. 50–54, 2016.
- L. W. Zhao and W. Z. Zhao, “Evapotranspiration of an oasis-desert transition zone in the middle stream of Heihe River, Northwest China,” J. Arid Land, vol. 6, no. 5, pp. 529–539, 2014.
- Y. Wang, C. Zhao, Z. Xu, and H. Peng, “Estimate crop evapotranspiration of spring wheat in the middle reaches of Heihe River basin, Northwestern China,” 2010 IEEE Int. Geosci. Remote Sens. Symp., vol. 1, pp. 1537–1540, 2010.
- K. He, Y. Yang, Y. Yang, S. Chen, Q. Hu, X. Liu, and F. Gao, “HYDRUS Simulation of Sustainable Brackish Water Irrigation in a Winter Wheat-Summer Maize Rotation System in the North China Plain,” Water, vol. 9, no. 7, pp. 1–19, 2017.
- G. Moreno, C. Pliego, D. Sarmiento, A. Barceló, and E. Martínez, “Yield and fruit quality of avocado trees under different regimes of water supply in the subtropical coast of Spain,” Agric. Water Manag., vol. 221, pp. 192–201, 2019.
- E. Holzapfel, J. A. de Souza, J. Jara, and H. C. Guerra, “Responses of avocado production to variation in irrigation levels,” Irrig. Sci., vol. 35, no. 3, pp. 205–215, 2017.
- A. Silber, Y. Israeli, M. Levi, A. Keinanb, O. Shapira, G. Chudi, A. Golanb, M. Noy, I. Levkovitcha, and S. Assouline, “Response of ‘Hass’ avocado trees to irrigation management and root constraint,” Agric. Water Manag., vol. 104, pp. 95–103, 2012.
- E. Román-paoli, F. M. Román-pérez, and J. Zamora-echevarría, “Evaluation of microirrigation levels for growth and productivity of avocado trees 12,” J. Agric. Univ., vol. 93, no. 3–4, pp. 173–186, 2009.
- Z. D. Du and L. T. Shao, “Simulation of deep percolation in fields with greater depth of groundwater,” Appl. Mech. Mater., vol. 448–453, no. 1, pp. 1158–1164, 2014.
- D. Li and M. Shao, “Temporal stability analysis for estimating spatial mean soil water storage and deep percolation in irrigated maize crops,” Agric. Water Manag., vol. 144, pp. 140–149, 2014.
- D. Ventrella, M. Castellini, S. Di Prima, P. Garofalo, and L. Lassabatère, “Assessment of the Physically-Based Hydrus-1D Model for Simulating the Water Fluxes of a Mediterranean Cropping System,” Water, vol. 11, pp. 2–19, 2019.
- K. L. Grecco, J. H. de Miranda, L. K. Silveira, and M. T. van Genuchten, “HYDRUS-2D simulations of water and potassium movement in drip irrigated tropical soil container cultivated with sugarcane,” Agric. Water Manag., vol. 221, pp. 334–347, 2019.
- D. Mbabazi, K. W. Migliaccio, J. H. Crane, C. Fraisse, L. Zotarelli, K. T. Morgan, and N. Kiggundu, “An irrigation schedule testing model for optimization of the Smartirrigation avocado app,” Agric. Water Manag., vol. 179, pp. 390–400, 2017.
- B. Xi, M. Bloomberg, M. Watt, Y. Wang, and L. Jia, “Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain,” Agric. Water Manag., vol. 176, pp. 243–254, 2016.
- M. Kandelous and J. Šimůnek, “Comparison of numerical , analytical , and empirical models to estimate wetting patterns for surface and subsurface drip irrigation,” Irrig. Sci., vol. 28, pp. 435–444, 2010.
- X. Tan, D. Shao, and H. Liu, “Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D,” Agric. Water Manag., vol. 132, pp. 69–78, 2014.
- C. Xu, W.-Z. Zeng, J.-W. Wu, and J.-S. Huang, “Effects of different irrigation strategies on soil water, salt, and nitrate nitrogen transport,” Ecol. Chem. Eng. S, vol. 22, no. 4, pp. 589–609, 2015.
- Y. Li, J. Šimůnek, L. Jing, Z. Zhang, and L. Ni, “Evaluation of water movement and water losses in a direct-seeded-rice field experiment using Hydrus-1D,” Agric. Water Manag., vol. 142, pp. 38–46, 2014.
- Y. Wu, A. Yang, Y. Zhao, and Z. Liu, “SIMULATION OF SOIL WATER MOVEMENT UNDER BIOCHAR APPLICATION BASED ON THE HYDRUS-1D IN THE BLACK SOIL REGION OF CHINA,” Appl. Ecol. Environ. Res., vol. 17, no. 2, pp. 4183–4192, 2019.
- S. Shekhar, D. R. Mailapalli, N. S. Raghuwanshi, and B. S. Das, “Hydrus‐1D model for simulating water fow through paddy soils under alternate wetting and drying irrigation practice,” Paddy Water Environ., 2019.
- R. F. Vázquez, D. Isidoro, and B. Sayah, “Modeling the unsaturated flow associated with a border irrigation event on an alfalfa plot,” Rev. Semest. la DIUC MASKANA, vol. 4, no. 1, pp. 91–106, 2013.
- V. Phogat, M. Mahadevan, M. Skewes, and J. W. Cox, “Modelling soil water and salt dynamics under pulsed and continuous surface drip irrigation of almond and implications of system design,” Irrig. Sci. Sci, vol. 30, no. 1, pp. 315–333, 2012.
- H. Li, J. Yi, J. Zhang, Y. Zhao, B. Si, R. L. Hill, L. Cui, and X. Liu, “Modeling of Soil Water and Salt Dynamics and Its Effects on Root Water Uptake in Heihe Arid Wetland, Gansu, China,” Water, vol. 7, no. 1, pp. 2382–2401, 2015.
- J. Šimůnek, M. T. Van Genuchtenb, and M. Šejnac, “Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes,” Vadose Zo. J., vol. 7, no. 2, pp. 587–600, 2008.
- L. Hou, Y. Zhou, H. Bao, and J. Wenninger, “Simulation of maize (Zea mays L.) water use with the HYDRUS-1D model in the semi-arid Hailiutu River catchment, Northwest China,” Hydrol. Sci. J., vol. 62, no. 1, pp. 93–103, 2016.
- D. Autovino, G. Rallo, and G. Provenzano, “Predicting soil and plant water status dynamic in olive orchards under di ff erent irrigation systems with Hydrus-2D : Model performance and scenario analysis,” Agric. Water Manag., vol. 203, no. 2017, pp. 225–235, 2018.
- R. S. Van Pelt and P. J. Wierengab, “Temporal Stability of Spatially Measured Soil Matric Potential Probability Density Function,” Soil Sci. Soc. Am. J., vol. 65, no. 3, pp. 668–677, 2001.
- Genuchten, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils,” SOIL SCI. SOC. AM. J., vol. 44, pp. 892–898, 1980.
- Organización de las naciones unidas para la agricultura y la alimentación (FAO), Evapotranspiración del cultivo . Guias para la determinación de los requerimientos de agua de los cultivos. Roma, Italia: FAO, 2006.
- C. J. Obando Gamboa, "Influencia del agua en el desempeño de los pavimentos: lluvia ácida", Investigación e Innovación en Ingenierías, vol. 5, n.º 2, pp. 190-206, 2017. DOI:https://doi.org/10.17081/invinno.5.2.2761
- K. Polo Bornachera., D.D. López Juvinao, and A. Henríquez Jaramillo, “Transferencia tecnológica para la producción limpia en la minería de materiales aluviales en La Guajira, Colombia,” Investigación e Innovación en Ingenierías ., vol. 8, pp. 6–20, 2020. DOI: https://doi.org/10.17081/invinno.8.1.3535
- S. Shekhar, D. Rao, M. Narendra, S. Raghuwanshi, and B. Sankar, “Hydrus ‑ 1D model for simulating water flow through paddy soils under alternate wetting and drying irrigation practice,” Paddy Water Environ., vol. 18, no. 1, pp. 73–85, 2020.
Referencias
Ministerio de Agricultura y Desarollo Rural (MinAgricultura), “Colombia se convierte en productor de aguacate Hass de clase mundial.” MinAgricultura, Colombia, 2019.
C. Gutierrez, “Desde el Valle del Cauca se exporta aguacate hass al mercado norteamericano,” Gobernación del Valle del Cauca, Cali, Colombia, 17-Jun-2019.
T. H. Skaggs, T. J. Trout, J. Šimůnek, and P. J. Shouse, “Comparison of HYDRUS-2D Simulations of Drip Irrigation with Experimental Observations,” J. Irrig. Drain. Eng., vol. 130, no. 4, pp. 304–310, 2004.
H. Zhou and W. zhi Zhao, “Modeling soil water balance and irrigation strategies in a flood-irrigated wheat-maize rotation system. A case in dry climate, China,” Agric. Water Manag., vol. 221, pp. 286–302, 2019.
C. Jyotiprava Dash, A. Sarangi, D. K. Singh, A. K. Singh, and P. P. Adhikary, “Prediction of root zone water and nitrogen balance in an irrigated rice field using a simulation model,” Paddy Water Env., vol. 13, pp. 281–290, 2015.
X. Besoain, C. Arenas, and E. S. B. A. Latorre, “Efecto del Periodo de Inundación en el Desarrollo de la Tristeza del Palto ( Persea americana ), Causada por Phytophthora cinnamomi,” Cienc. e Investig. Agrar., vol. 32, no. 2, pp. 97–103, 2005.
G. Doupis, N. Kavroulakis, G. Psarras, and I. E. Papadakis, “Growth , photosynthetic performance and antioxidative response of ‘ Hass ’ and ‘ Fuerte ’ avocado ( Persea americana Mill .) plants grown under high soil moisture,” Photosynthetica, vol. 55, no. 4, pp. 655–663, 2017.
R. E. Sterne, G. A. Zentmyer, and M. R. Kaufmann, “The Effect of Matric and Osmotic Potential of Soil on Phytophthora Root Disease of Persea indica Tension Plate Pressure Plate,” Ecol. Epidemiol., vol. 67, pp. 1491–1494, 1977.
A. Tafteh and A. R. Sepaskhah, “Application of HYDRUS-1D model for simulating water and nitrate leaching from continuous and alternate furrow irrigated rapeseed and maize fields,” Agric. Water Manag., vol. 113, pp. 19– 29, 2012.
G. Wang, J. Chen, Q. Zhou, X. Chu, and X. Zhou, “Modelling analysis of water-use efficiency of maize in Heihe River Basin,” Phys. Chem. Earth, vol. 96, pp. 50–54, 2016.
L. W. Zhao and W. Z. Zhao, “Evapotranspiration of an oasis-desert transition zone in the middle stream of Heihe River, Northwest China,” J. Arid Land, vol. 6, no. 5, pp. 529–539, 2014.
Y. Wang, C. Zhao, Z. Xu, and H. Peng, “Estimate crop evapotranspiration of spring wheat in the middle reaches of Heihe River basin, Northwestern China,” 2010 IEEE Int. Geosci. Remote Sens. Symp., vol. 1, pp. 1537–1540, 2010.
K. He, Y. Yang, Y. Yang, S. Chen, Q. Hu, X. Liu, and F. Gao, “HYDRUS Simulation of Sustainable Brackish Water Irrigation in a Winter Wheat-Summer Maize Rotation System in the North China Plain,” Water, vol. 9, no. 7, pp. 1–19, 2017.
G. Moreno, C. Pliego, D. Sarmiento, A. Barceló, and E. Martínez, “Yield and fruit quality of avocado trees under different regimes of water supply in the subtropical coast of Spain,” Agric. Water Manag., vol. 221, pp. 192–201, 2019.
E. Holzapfel, J. A. de Souza, J. Jara, and H. C. Guerra, “Responses of avocado production to variation in irrigation levels,” Irrig. Sci., vol. 35, no. 3, pp. 205–215, 2017.
A. Silber, Y. Israeli, M. Levi, A. Keinanb, O. Shapira, G. Chudi, A. Golanb, M. Noy, I. Levkovitcha, and S. Assouline, “Response of ‘Hass’ avocado trees to irrigation management and root constraint,” Agric. Water Manag., vol. 104, pp. 95–103, 2012.
E. Román-paoli, F. M. Román-pérez, and J. Zamora-echevarría, “Evaluation of microirrigation levels for growth and productivity of avocado trees 12,” J. Agric. Univ., vol. 93, no. 3–4, pp. 173–186, 2009.
Z. D. Du and L. T. Shao, “Simulation of deep percolation in fields with greater depth of groundwater,” Appl. Mech. Mater., vol. 448–453, no. 1, pp. 1158–1164, 2014.
D. Li and M. Shao, “Temporal stability analysis for estimating spatial mean soil water storage and deep percolation in irrigated maize crops,” Agric. Water Manag., vol. 144, pp. 140–149, 2014.
D. Ventrella, M. Castellini, S. Di Prima, P. Garofalo, and L. Lassabatère, “Assessment of the Physically-Based Hydrus-1D Model for Simulating the Water Fluxes of a Mediterranean Cropping System,” Water, vol. 11, pp. 2–19, 2019.
K. L. Grecco, J. H. de Miranda, L. K. Silveira, and M. T. van Genuchten, “HYDRUS-2D simulations of water and potassium movement in drip irrigated tropical soil container cultivated with sugarcane,” Agric. Water Manag., vol. 221, pp. 334–347, 2019.
D. Mbabazi, K. W. Migliaccio, J. H. Crane, C. Fraisse, L. Zotarelli, K. T. Morgan, and N. Kiggundu, “An irrigation schedule testing model for optimization of the Smartirrigation avocado app,” Agric. Water Manag., vol. 179, pp. 390–400, 2017.
B. Xi, M. Bloomberg, M. Watt, Y. Wang, and L. Jia, “Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain,” Agric. Water Manag., vol. 176, pp. 243–254, 2016.
M. Kandelous and J. Šimůnek, “Comparison of numerical , analytical , and empirical models to estimate wetting patterns for surface and subsurface drip irrigation,” Irrig. Sci., vol. 28, pp. 435–444, 2010.
X. Tan, D. Shao, and H. Liu, “Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D,” Agric. Water Manag., vol. 132, pp. 69–78, 2014.
C. Xu, W.-Z. Zeng, J.-W. Wu, and J.-S. Huang, “Effects of different irrigation strategies on soil water, salt, and nitrate nitrogen transport,” Ecol. Chem. Eng. S, vol. 22, no. 4, pp. 589–609, 2015.
Y. Li, J. Šimůnek, L. Jing, Z. Zhang, and L. Ni, “Evaluation of water movement and water losses in a direct-seeded-rice field experiment using Hydrus-1D,” Agric. Water Manag., vol. 142, pp. 38–46, 2014.
Y. Wu, A. Yang, Y. Zhao, and Z. Liu, “SIMULATION OF SOIL WATER MOVEMENT UNDER BIOCHAR APPLICATION BASED ON THE HYDRUS-1D IN THE BLACK SOIL REGION OF CHINA,” Appl. Ecol. Environ. Res., vol. 17, no. 2, pp. 4183–4192, 2019.
S. Shekhar, D. R. Mailapalli, N. S. Raghuwanshi, and B. S. Das, “Hydrus‐1D model for simulating water fow through paddy soils under alternate wetting and drying irrigation practice,” Paddy Water Environ., 2019.
R. F. Vázquez, D. Isidoro, and B. Sayah, “Modeling the unsaturated flow associated with a border irrigation event on an alfalfa plot,” Rev. Semest. la DIUC MASKANA, vol. 4, no. 1, pp. 91–106, 2013.
V. Phogat, M. Mahadevan, M. Skewes, and J. W. Cox, “Modelling soil water and salt dynamics under pulsed and continuous surface drip irrigation of almond and implications of system design,” Irrig. Sci. Sci, vol. 30, no. 1, pp. 315–333, 2012.
H. Li, J. Yi, J. Zhang, Y. Zhao, B. Si, R. L. Hill, L. Cui, and X. Liu, “Modeling of Soil Water and Salt Dynamics and Its Effects on Root Water Uptake in Heihe Arid Wetland, Gansu, China,” Water, vol. 7, no. 1, pp. 2382–2401, 2015.
J. Šimůnek, M. T. Van Genuchtenb, and M. Šejnac, “Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes,” Vadose Zo. J., vol. 7, no. 2, pp. 587–600, 2008.
L. Hou, Y. Zhou, H. Bao, and J. Wenninger, “Simulation of maize (Zea mays L.) water use with the HYDRUS-1D model in the semi-arid Hailiutu River catchment, Northwest China,” Hydrol. Sci. J., vol. 62, no. 1, pp. 93–103, 2016.
D. Autovino, G. Rallo, and G. Provenzano, “Predicting soil and plant water status dynamic in olive orchards under di ff erent irrigation systems with Hydrus-2D : Model performance and scenario analysis,” Agric. Water Manag., vol. 203, no. 2017, pp. 225–235, 2018.
R. S. Van Pelt and P. J. Wierengab, “Temporal Stability of Spatially Measured Soil Matric Potential Probability Density Function,” Soil Sci. Soc. Am. J., vol. 65, no. 3, pp. 668–677, 2001.
Genuchten, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils,” SOIL SCI. SOC. AM. J., vol. 44, pp. 892–898, 1980.
Organización de las naciones unidas para la agricultura y la alimentación (FAO), Evapotranspiración del cultivo . Guias para la determinación de los requerimientos de agua de los cultivos. Roma, Italia: FAO, 2006.
C. J. Obando Gamboa, "Influencia del agua en el desempeño de los pavimentos: lluvia ácida", Investigación e Innovación en Ingenierías, vol. 5, n.º 2, pp. 190-206, 2017. DOI:https://doi.org/10.17081/invinno.5.2.2761
K. Polo Bornachera., D.D. López Juvinao, and A. Henríquez Jaramillo, “Transferencia tecnológica para la producción limpia en la minería de materiales aluviales en La Guajira, Colombia,” Investigación e Innovación en Ingenierías ., vol. 8, pp. 6–20, 2020. DOI: https://doi.org/10.17081/invinno.8.1.3535
S. Shekhar, D. Rao, M. Narendra, S. Raghuwanshi, and B. Sankar, “Hydrus ‑ 1D model for simulating water flow through paddy soils under alternate wetting and drying irrigation practice,” Paddy Water Environ., vol. 18, no. 1, pp. 73–85, 2020.