Derechos de autor 2021 Investigación e Innovación en Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Identificación modal de puentes segmentales mediante simulaciones numéricas de pruebas de vibración forzada con vehículos
Corresponding Author(s) : Carlos Alberto Riveros Jerez
Investigación e Innovación en Ingenierías,
Vol. 9 Núm. 2 (2021): Julio - Diciembre
Resumen
Objetivo: Las condiciones topográficas y altas especificaciones técnicas de los recientes proyectos de infraestructura vial ejecutados por el gobierno colombiano ha impulsado la construcción de numerosos puentes segmentales. La Norma Colombiana de Diseño de Puentes – LRFD – CCP 14 no establece criterios específicos para la evaluación de puentes nuevos que permitan la evaluación estructural. Con el objetivo de fomentar la implementación de pruebas dinámicas en puentes segmentales se presenta un estudio de identificación de parámetros influyentes en la caracterización dinámica usando vibración forzada. Metodología: Con base en los parámetros identificados, se ejecutó un conjunto de simulaciones numéricas usando herramientas computacionales específicamente en análisis de historia tiempo para análisis de aceleraciones producto de circulación de vehículos pesados a distintas velocidades. Resultados: Se desarrolló un enfoque analítico para selección de velocidades de circulación para distintos tipos de vehículos de prueba. Conclusiones: lo que permite obtener un conjunto de variables óptimas como velocidad, peso, posición de impacto y frenado para la ejecución de pruebas de vibración forzada que permitan complementar los resultados que se obtienen de pruebas de vibración ambiental.
Palabras clave
Descargar cita
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Muñoz, R. Hernández, E. Valbuena, L. Trujillo, and L. Santacruz, “Rehabilitación de los puentes de la Red de carreteras de Colombia, basados en inspecciones visuales, estudios especializados y estrategias de reparación.,” Rev. Ing. Constr., vol. 20, no. 1, pp. 159–182, 2005.
- A. Gastineau, T. Johnson, and A. Schultz, “Bridge Health Monitoring and Inspections Systems - A Survey of Methods,” University of Minnesota, Minnesota, 2009.
- A. C. de I. S. AIS, “SECCIÓN 4: Análisis y evaluación estructural,” in Norma Colombiana de Diseño de Puentes, CCP 14, 1st ed., Bogotá: Asociación Colombiana de Ingeniería Sísmica, 2014, p. 83.
- Z. P. Bazant, Q. Yu, G.-H. Li, G. J. Klein, and V. Kristek, “Excessive deflections of record-span prestressed box girder,” ACI Concr. Int., vol. 32, no. 6, pp. 44–52, 2010, doi: 10.15554/pcij.05011994.66.80.
- Mohamed Abdel-Basset Abdo, Structural Health Monitoring History , Applications and Future, no. September. 2015.
- S. Kashif Ur Rehman, Z. Ibrahim, S. A. Memon, and M. Jameel, “Nondestructive test methods for concrete bridges: A review,” Constr. Build. Mater., vol. 107, pp. 58–86, 2016, doi: 10.1016/j.conbuildmat.2015.12.011.
- A. Devin, P. Fanning, C. Middleton, and A. Pavic, “Structural dynamic parameter identification and effect of test techniques,” in Topics in Dynamic of Civil Structures, 2013, vol. 4, pp. 175–181, doi: https://doi.org/10.1007/978-1-4614-6555-3_20.
- J. M. W. Brownjohn, F. Magalhaes, E. Caetano, and A. Cunha, “Ambient vibration re-testing and operational modal analysis of the Humber Bridge,” Eng. Struct., vol. 32, no. 8, pp. 2003–2018, 2010, doi: 10.1016/j.engstruct.2010.02.034.
- B. Sevim, A. Bayraktar, and A. C. Altunişik, “Finite element model calibration of berke arch dam using operational modal testing,” JVC/Journal Vib. Control, vol. 17, no. 7, pp. 1065–1079, 2011, doi: 10.1177/1077546310377912.
- R. Cantieni, “Experimental methods used in system identification of civil engineering structures,” Proc. 1st Int. Oper. Modal Anal. Conf. IOMAC 2005, pp. 10–11, 2005.
- C. Kramer, C. A. de Smet, and B. Peeters, “Comparison of ambient and forced vibration testing of civil engineering structures,” Shock Vib. Dig., vol. 32, no. 1, p. 58, 2000.
- M. F. Green, “Modal test methods for bridges: A review,” Conf. 1995 IMAC XIII – 13th Int. Modal Anal. Conf., pp. 552–558, 1995.
- C. R. Farrar, T. A. Duffey, P. Cornwell, and S. W. Doebling, “Excitation methods for bridge structures,” Shock Vib. Dig., vol. 32, no. 1, p. 26, 2000.
- S. W. Doebling, C. R. Farrar, and P. Cornwell, “Statistical comparison of impact and ambient testing results from the Alamosa Canyon Bridge,” Proc. Int. Modal Anal. Conf. - IMAC, vol. 1, no. September 2015, pp. 264–270, 1997.
- A. Viviescas Jaimes, W. J. Carrillo León, and L. A. Vargas Carvajal, “Structural health monitoring baseline of Gómez Ortiz bridge using ambient vibration tests,” Inge Cuc, vol. 14, no. 1, pp. 52–65, 2018, doi: 10.17981/ingecuc.14.1.2018.05.
- P. Reynolds and A. Pavic, “Comparison of forced and ambient vibration measurements on a bridge,” Proc. Int. Modal Anal. Conf. - IMAC, vol. 1, no. January, pp. 846–851, 2001.
- G. W. Chen, S. Beskhyroun, and P. Omenzetter, “Ambient and forced vibration testing of an eleven-span motorway off-ramp bridge,” Proc. Int. Conf. Struct. Dyn. , EURODYN, vol. 2014-Janua, pp. 2427–2434, 2014, doi: 10.13140/2.1.2528.9281.
- W.-H. P. Yen, T. T. Baber, and F. W. Barton, “Ambient and forced vibration tests on a cable-stayed bridge,” in Nondestructive Testing Methods for Civil Infrastructure, 1995, pp. 109–123.
- O. S. Salawu and C. Williams, “Bridge assessment using forced-vibration testing,” J. Struct. Eng. (United States), vol. 121, no. 2, pp. 161–173, 1995, doi: 10.1061/(ASCE)0733-9445(1995)121:2(161).
- Á. Cunha and E. Caetano, “From input-Output to Output-Only modal identification of civil engineering struct,” Proc. 1st Int. Oper. Modal Anal. Conf. IOMAC 2005, 2005.
- O. S. Salawu and C. Williams, “Review of full-scale dynamic testing of bridge structures,” Eng. Struct., vol. 17, no. 2, pp. 113–121, 1995, doi: 10.1016/0141-0296(95)92642-L.
- R. Cantieni, “Dynamic load tests on highway bridges in Switzerland - 60 years of experience.,” Swiss Fede., vol. 211, no. 211. Dübendorf: Swiss Federal Laboratories for Materials Testing and Research, 1983.
- Y. B. Yang and J. P. Yang, State-of-the-Art Review on Modal Identification and Damage Detection of Bridges by Moving Test Vehicles, vol. 18, no. 2. 2018.
- J. P. Conte, S. F. Masri, J. P. Caffrey, and B. Moaveni, “Dynamic Testing of Alfred Zampa Memorial Bridge,” J. Struct. Eng., vol. 134, no. 6, 2008, doi: 10.1061/(ASCE)0733-9445(2008)134.
- T. Argentini, M. Belloli, L. Rosa, E. Sabbioni, A. Zasso, and M. Villani, “Modal Identificaition of a Cable-Stayed Bridge by Means of Truck Induced Vibrations,” Conf. Proc. Soc. Exp. Mech. Ser., vol. 1, pp. 389–400, 2012, doi: 10.1007/978-1-4614-2413-0.
- R. Cantieni, “Dynamic Load Testing of Highway Bridges.,” Transp. Res. Rec., vol. 2, pp. 141–148, 1984.
- D. Cantero, P. McGetrick, C. W. Kim, and E. OBrien, “Experimental monitoring of bridge frequency evolution during the passage of vehicles with different suspension properties,” Eng. Struct., vol. 187, no. June 2018, pp. 209–219, 2019, doi: 10.1016/j.engstruct.2019.02.065.
- D. Cantero, D. Hester, and J. Brownjohn, “Evolution of bridge frequencies and modes of vibration during truck passage,” Eng. Struct., vol. 152, pp. 452–464, 2017, doi: 10.1016/j.engstruct.2017.09.039.
- Y. B. Yang, B. Zhang, T. Wang, H. Xu, and Y. Wu, “Two-axle test vehicle for bridges: Theory and applications,” Int. J. Mech. Sci., vol. 152, no. June 2018, pp. 51–62, 2019, doi: 10.1016/j.ijmecsci.2018.12.043.
- J. Valdés and J. D. la Colina, “Análisis de la amplificación dinámica de la carga viva en puentes con base en pruebas experimentales,” Rev. Tecnológica-ESPOL, vol. 21, no. 1, pp. 149–156, 2008, [Online]. Available: http://learningobjects2006.espol.edu.ec/index.php/tecnologica/article/view/150.
- Q. fei Gao, Z. lin Wang, J. Li, C. Chen, and H. yu Jia, “Dynamic load allowance in different positions of the multi-span girder bridge with variable cross-section,” J. Vibroengineering, vol. 17, no. 4, pp. 2025–2039, 2015.
- Dirección General de carreteras, Recomendaciones para la realización de pruebas de carga de recepción en puentes de carretera, Primera., vol. 1, no. 1. Madrid: Centro de publicaciones, 1999.
- service d’Etudes techniques des routes et Autoroutes, Technical Guide Loading tests on road bridges and footbridges, 1st ed., no. october. Bagneux: SETRA, 2006.
- American Association of State Highway and Transportation Officials, The Manual for Bridge Evaluation, Second Edi. Washington, 2016.
- R. Brincker, L. Zhang, and P. Andersen, “Modal identification from ambient responses using frequency domain decomposition,” in 18 International Modal Analysis Conference IMAC, 2000, no. 18.
- Asociación Colombiana de Ingeniería Sísmica, “Titulo A - Requisitos Generales de Diseño y Construcción Sismo Resistente,” NSR-10, vol. Titulo A, pp. 1–174, 2010.
- J. D. Cryer, J. S. Bendat, and A. G. Piersol, Random Data. Analysis and Measurement Procedures, 4th ed., vol. 82, no. 400. New Jersey: Wiley, 2010.
- M. Olmo and R. Nave, “Energy of falling object,” Fuerza de impacto en la caida de Objetos, 2020. http://hyperphysics.phy-astr.gsu.edu/hbasees/flobi.html#c1%22 (accessed Jun. 04, 2020).
- A. C. de I. S. AIS, “SECCION 3: Cargas y Factores de Carga,” in Norma Colombiana de Diseño de Puentes, CCP 14, 1st ed., Bogotá: ASOCIACIÓN COLOMBIANA DE INGENIERÍA SÍSMICA, 2014, p. 140.
- Instituto Nacional de Vías, Manual de Diseño Geométrico de Carreteras, 1st ed., vol. 84. Bogotá: INVIAS, 2008.
Referencias
E. Muñoz, R. Hernández, E. Valbuena, L. Trujillo, and L. Santacruz, “Rehabilitación de los puentes de la Red de carreteras de Colombia, basados en inspecciones visuales, estudios especializados y estrategias de reparación.,” Rev. Ing. Constr., vol. 20, no. 1, pp. 159–182, 2005.
A. Gastineau, T. Johnson, and A. Schultz, “Bridge Health Monitoring and Inspections Systems - A Survey of Methods,” University of Minnesota, Minnesota, 2009.
A. C. de I. S. AIS, “SECCIÓN 4: Análisis y evaluación estructural,” in Norma Colombiana de Diseño de Puentes, CCP 14, 1st ed., Bogotá: Asociación Colombiana de Ingeniería Sísmica, 2014, p. 83.
Z. P. Bazant, Q. Yu, G.-H. Li, G. J. Klein, and V. Kristek, “Excessive deflections of record-span prestressed box girder,” ACI Concr. Int., vol. 32, no. 6, pp. 44–52, 2010, doi: 10.15554/pcij.05011994.66.80.
Mohamed Abdel-Basset Abdo, Structural Health Monitoring History , Applications and Future, no. September. 2015.
S. Kashif Ur Rehman, Z. Ibrahim, S. A. Memon, and M. Jameel, “Nondestructive test methods for concrete bridges: A review,” Constr. Build. Mater., vol. 107, pp. 58–86, 2016, doi: 10.1016/j.conbuildmat.2015.12.011.
A. Devin, P. Fanning, C. Middleton, and A. Pavic, “Structural dynamic parameter identification and effect of test techniques,” in Topics in Dynamic of Civil Structures, 2013, vol. 4, pp. 175–181, doi: https://doi.org/10.1007/978-1-4614-6555-3_20.
J. M. W. Brownjohn, F. Magalhaes, E. Caetano, and A. Cunha, “Ambient vibration re-testing and operational modal analysis of the Humber Bridge,” Eng. Struct., vol. 32, no. 8, pp. 2003–2018, 2010, doi: 10.1016/j.engstruct.2010.02.034.
B. Sevim, A. Bayraktar, and A. C. Altunişik, “Finite element model calibration of berke arch dam using operational modal testing,” JVC/Journal Vib. Control, vol. 17, no. 7, pp. 1065–1079, 2011, doi: 10.1177/1077546310377912.
R. Cantieni, “Experimental methods used in system identification of civil engineering structures,” Proc. 1st Int. Oper. Modal Anal. Conf. IOMAC 2005, pp. 10–11, 2005.
C. Kramer, C. A. de Smet, and B. Peeters, “Comparison of ambient and forced vibration testing of civil engineering structures,” Shock Vib. Dig., vol. 32, no. 1, p. 58, 2000.
M. F. Green, “Modal test methods for bridges: A review,” Conf. 1995 IMAC XIII – 13th Int. Modal Anal. Conf., pp. 552–558, 1995.
C. R. Farrar, T. A. Duffey, P. Cornwell, and S. W. Doebling, “Excitation methods for bridge structures,” Shock Vib. Dig., vol. 32, no. 1, p. 26, 2000.
S. W. Doebling, C. R. Farrar, and P. Cornwell, “Statistical comparison of impact and ambient testing results from the Alamosa Canyon Bridge,” Proc. Int. Modal Anal. Conf. - IMAC, vol. 1, no. September 2015, pp. 264–270, 1997.
A. Viviescas Jaimes, W. J. Carrillo León, and L. A. Vargas Carvajal, “Structural health monitoring baseline of Gómez Ortiz bridge using ambient vibration tests,” Inge Cuc, vol. 14, no. 1, pp. 52–65, 2018, doi: 10.17981/ingecuc.14.1.2018.05.
P. Reynolds and A. Pavic, “Comparison of forced and ambient vibration measurements on a bridge,” Proc. Int. Modal Anal. Conf. - IMAC, vol. 1, no. January, pp. 846–851, 2001.
G. W. Chen, S. Beskhyroun, and P. Omenzetter, “Ambient and forced vibration testing of an eleven-span motorway off-ramp bridge,” Proc. Int. Conf. Struct. Dyn. , EURODYN, vol. 2014-Janua, pp. 2427–2434, 2014, doi: 10.13140/2.1.2528.9281.
W.-H. P. Yen, T. T. Baber, and F. W. Barton, “Ambient and forced vibration tests on a cable-stayed bridge,” in Nondestructive Testing Methods for Civil Infrastructure, 1995, pp. 109–123.
O. S. Salawu and C. Williams, “Bridge assessment using forced-vibration testing,” J. Struct. Eng. (United States), vol. 121, no. 2, pp. 161–173, 1995, doi: 10.1061/(ASCE)0733-9445(1995)121:2(161).
Á. Cunha and E. Caetano, “From input-Output to Output-Only modal identification of civil engineering struct,” Proc. 1st Int. Oper. Modal Anal. Conf. IOMAC 2005, 2005.
O. S. Salawu and C. Williams, “Review of full-scale dynamic testing of bridge structures,” Eng. Struct., vol. 17, no. 2, pp. 113–121, 1995, doi: 10.1016/0141-0296(95)92642-L.
R. Cantieni, “Dynamic load tests on highway bridges in Switzerland - 60 years of experience.,” Swiss Fede., vol. 211, no. 211. Dübendorf: Swiss Federal Laboratories for Materials Testing and Research, 1983.
Y. B. Yang and J. P. Yang, State-of-the-Art Review on Modal Identification and Damage Detection of Bridges by Moving Test Vehicles, vol. 18, no. 2. 2018.
J. P. Conte, S. F. Masri, J. P. Caffrey, and B. Moaveni, “Dynamic Testing of Alfred Zampa Memorial Bridge,” J. Struct. Eng., vol. 134, no. 6, 2008, doi: 10.1061/(ASCE)0733-9445(2008)134.
T. Argentini, M. Belloli, L. Rosa, E. Sabbioni, A. Zasso, and M. Villani, “Modal Identificaition of a Cable-Stayed Bridge by Means of Truck Induced Vibrations,” Conf. Proc. Soc. Exp. Mech. Ser., vol. 1, pp. 389–400, 2012, doi: 10.1007/978-1-4614-2413-0.
R. Cantieni, “Dynamic Load Testing of Highway Bridges.,” Transp. Res. Rec., vol. 2, pp. 141–148, 1984.
D. Cantero, P. McGetrick, C. W. Kim, and E. OBrien, “Experimental monitoring of bridge frequency evolution during the passage of vehicles with different suspension properties,” Eng. Struct., vol. 187, no. June 2018, pp. 209–219, 2019, doi: 10.1016/j.engstruct.2019.02.065.
D. Cantero, D. Hester, and J. Brownjohn, “Evolution of bridge frequencies and modes of vibration during truck passage,” Eng. Struct., vol. 152, pp. 452–464, 2017, doi: 10.1016/j.engstruct.2017.09.039.
Y. B. Yang, B. Zhang, T. Wang, H. Xu, and Y. Wu, “Two-axle test vehicle for bridges: Theory and applications,” Int. J. Mech. Sci., vol. 152, no. June 2018, pp. 51–62, 2019, doi: 10.1016/j.ijmecsci.2018.12.043.
J. Valdés and J. D. la Colina, “Análisis de la amplificación dinámica de la carga viva en puentes con base en pruebas experimentales,” Rev. Tecnológica-ESPOL, vol. 21, no. 1, pp. 149–156, 2008, [Online]. Available: http://learningobjects2006.espol.edu.ec/index.php/tecnologica/article/view/150.
Q. fei Gao, Z. lin Wang, J. Li, C. Chen, and H. yu Jia, “Dynamic load allowance in different positions of the multi-span girder bridge with variable cross-section,” J. Vibroengineering, vol. 17, no. 4, pp. 2025–2039, 2015.
Dirección General de carreteras, Recomendaciones para la realización de pruebas de carga de recepción en puentes de carretera, Primera., vol. 1, no. 1. Madrid: Centro de publicaciones, 1999.
service d’Etudes techniques des routes et Autoroutes, Technical Guide Loading tests on road bridges and footbridges, 1st ed., no. october. Bagneux: SETRA, 2006.
American Association of State Highway and Transportation Officials, The Manual for Bridge Evaluation, Second Edi. Washington, 2016.
R. Brincker, L. Zhang, and P. Andersen, “Modal identification from ambient responses using frequency domain decomposition,” in 18 International Modal Analysis Conference IMAC, 2000, no. 18.
Asociación Colombiana de Ingeniería Sísmica, “Titulo A - Requisitos Generales de Diseño y Construcción Sismo Resistente,” NSR-10, vol. Titulo A, pp. 1–174, 2010.
J. D. Cryer, J. S. Bendat, and A. G. Piersol, Random Data. Analysis and Measurement Procedures, 4th ed., vol. 82, no. 400. New Jersey: Wiley, 2010.
M. Olmo and R. Nave, “Energy of falling object,” Fuerza de impacto en la caida de Objetos, 2020. http://hyperphysics.phy-astr.gsu.edu/hbasees/flobi.html#c1%22 (accessed Jun. 04, 2020).
A. C. de I. S. AIS, “SECCION 3: Cargas y Factores de Carga,” in Norma Colombiana de Diseño de Puentes, CCP 14, 1st ed., Bogotá: ASOCIACIÓN COLOMBIANA DE INGENIERÍA SÍSMICA, 2014, p. 140.
Instituto Nacional de Vías, Manual de Diseño Geométrico de Carreteras, 1st ed., vol. 84. Bogotá: INVIAS, 2008.