Derechos de autor 2022 Investigación e Innovación en Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Incremento de la eficiencia estándar de aireación (SAE), de un aireador de superficie de baja velocidad
Corresponding Author(s) : César René Blanco Zúñiga
Investigación e Innovación en Ingenierías,
Vol. 10 Núm. 1 (2022): Enero-Junio
Resumen
Objetivo: Evaluar la tasa de transferencia de oxígeno disuelto (OD), en un aireador de superficie de baja velocidad (Low Speed Surface Aerator – LSSA), variando la potencia; y proponer una modificación geométrica de los impulsores, para mejorar la eficiencia de aireación estándar (Standar Aeration Efficiency - SAE). Metodología: Se modeló un LSSA a través de software CAD, y se construyeron 3 prototipos de LSSA, mediante un proceso de impresión 3D, modificando la geometría original del impulsor. Luego se realizaron ensayos a escala piloto, usando los LSSA acoplados a un motorreductor capaz de generar 210 RPM. Finalmente, se determinaron los coeficientes de transferencia de oxígeno, y la eficiencia de aireación en el agua, de los LSSA, por medio de un modelo matemático. Resultados: A partir de las proyecciones obtenidas, se estableció que la modificación geométrica propuesta, incrementa la SAE en un 20.3% y 29.8% para potencias de 1 y 2 vatios (W), respectivamente; manteniendo casi constante la tasa de transferencia estándar de oxígeno (Standar Oxygen Transfer Rate - SOTR); además, la forma geométrica y disposición de los impulsores propuesta, parece favorecer el tiempo de contacto entre la fase gaseosa (aire) y la fase liquida (agua), mejorando el tiempo de permanencia de las burbujas atrapadas, evidencia representada en los coeficientes kLa (h-1). Conclusiones: De acuerdo con los resultados, se puede inferir que estos aireadores de tipo LSSA, pueden ser optimizados con un diseño más eficiente, permitiendo reducir el consumo energético asociado a su funcionamiento, sin penalizar la transferencia de OD.
Palabras clave
Descargar cita
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Caniani, G. Esposito, R. Gori, and G. Mannina, “Towards A New Decision Support System for Design, Management and Operation of Wastewater Treatment Plants for the Reduction of Greenhouse Gases Emission,” Water, vol. 7, no. 10, pp. 5599–5616, Oct. 2015, DOI: http://doi.org/10.3390/w7105599.
- G. Mannina, A. Cosenza, R. Gori, M. Garrido-Baserbac, R. Sobhani, and D. Rosso, “Greenhouse Gas Emissions from Wastewater Treatment Plants on a Plantwide Scale: Sensitivity and Uncertainty Analysis,” J. Environ. Eng., vol. 142, no. 6, p. 04016017, Jun. 2016, DOI: http://doi.org/10.1061/(ASCE)EE.1943-7870.0001082.
- T. Xie and C. Wang, “Energy Consumption in Wastewater Treatment Plants in China.,” World Congr. Water,
- Clim. Energy, pp. 1–17, 2012, DOI: http://doi.org/10.13140/2.1.1228.9285.
- A. Masłoń, “Analysis of energy consumption at the Rzeszów Wastewater Treatment Plant,” E3S Web Conf., vol. 22, p. 00115, Nov. 2017, DOI: http://doi.org/10.1051/e3sconf/20172200115.
- J. Daw, K. Hallett, J. DeWolfe, and I. Venner, “Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities,” Tech. Rep. NREL/TP-7A30-53341 January 2012, no. January, p. 25, 2012.
- G. Tchobanoglous, F. Louis Burton, and H. D. Stensel, Wastewater Engineering Treatment and Reuse, Fouth Edit. Mc Graw Hill.
- S. B. Thakre, L. B. Bhuyar, and S. J. Deshmukh, “Effect of Different Configurations of Mechanical Aerators on Oxygen Transfer and Aeration Efficiency with respect to Power Consumption,” Int. J. Mech. Mechatronics Eng., vol. 2, no. 2, pp. 170–178, 2008.
- M. Adel, M. R. Shaalan, R. M. Kamal, and D. S. El Monayeri, “A comparative study of impeller aerators configurations,” Alexandria Eng. J., vol. 58, no. 4, pp. 1431–1438, Dec. 2019, DOI: http://doi.org/10.1016/j.aej.2019.11.014.
- W. Huang, C. Wu, and W. Xia, “Oxygen Transfer in High-Speed Surface Aeration Tank for Wastewater Treatment: Full-Scale Test and Numerical Modeling,” J. Environ. Eng., vol. 135, no. 8, pp. 684–691, Aug. 2009, DOI: http://doi.org/10.1061/(ASCE)EE.1943-7870.0000023.
- H. M. Issa, “Characterization and improvement of a surface aerator for water treatment,” Université de Toulouse, 2013.
- P. Duchène and E. Cotteux, Insufflation d’air fines bulles : application aux stations d’épuration en boues activées des petites collectivitiés. 2002.
- M. Roustan and J.-C. Charpentier, Tranferts gaz-liquide dans les procédés de traitement des eaux et des effluents gazeux. Paris,--Londres,--New York, 2003.
- J. Mueller, W. C. Boyle, and H. J. Popel, Aeration: principles and practice, 1st ed., vol. 11. Boca Raton, Filadelfia, USA, 2002.
- B. Cancino, P. Roth, and M. Reuß, “Design of high efficiency surface aerators,” Aquac. Eng., vol. 31, no. 1–2, pp. 83–98, Aug. 2004, DOI: http://doi.org/10.1016/j.aquaeng.2004.03.002.
- B. Cancino, “Design of high efficiency surface aerators,” Aquac. Eng., vol. 31, no. 1–2, pp. 99–115, Aug. 2004, DOI: http://doi.org/10.1016/j.aquaeng.2004.03.003.
- S. Bahri, Jufriadi, and H. Anwar, “The Ineffectiveness of Water Splash on Paddlewheel Aerator,” IOP Conf. Ser. Earth Environ. Sci., vol. 268, no. 1, 2019, DOI: http://doi.org/10.1088/1755-1315/268/1/012162.
- A. S. of C. Engineers, ASCE Standar: Measurement of Oxygen Transfer in Clean Water (2-06). 2007.
- L. Uby, “Next steps in clean water oxygen transfer testing – A critical review of current standards,” Water Res., 2019, DOI: http://doi.org/10.1016/j.watres.2019.03.063.
- C. M. Barreto et al., “Sidestream superoxygenation for wastewater treatment: Oxygen transfer in clean water and mixed liquor,” J. Environ. Manage., vol. 219, pp. 125–137, 2018, DOI: http://doi.org/10.1016/j.jenvman.2018.04.035.
- H. A. Abdelrahman and C. E. Boyd, “Effects of mechanical aeration on evaporation rate and water temperature in aquaculture ponds,” Aquac. Res., vol. 49, no. 6, pp. 2184–2192, Jun. 2018, DOI: http://doi.org/10.1111/are.13674.
- S. M. Roy, S. Moulick, and B. C. Mal, “Design Characteristics of Spiral Aerator,” J. World Aquac. Soc., vol. 48, no. 6, pp. 898–908, 2017, DOI: http://doi.org/10.1111/jwas.12410.
- S. Bahri, R. P. A. Setiawan, W. Hermawan, and M. Z. Junior, “Simulation on Blade Geometry and Operational Condition toward Torque Requirement and Drag Force in Paddle Wheel Aerator,” vol. 6, no. 2, pp. 812–816, 2015.
- C. D. DeMoyer, E. L. Schierholz, J. S. Gulliver, and S. C. Wilhelms, “Impact of bubble and free surface oxygen transfer on diffused aeration systems,” Water Res., 2003.
- L. Tian, Z. Xu, L. Chen, Y. Liu, and T. Zhang, “Study on oxygen gas holdup and kinetics using various types of paddles during marmatite leaching process,” Hydrometallurgy, vol. 180, pp. 158–171, Sep. 2018, DOI: http://doi.org/10.1016/j.hydromet.2018.06.011.
- M. K. Stenstrom, S.-Y. (Ben) Leu, and P. Jiang, “Theory to Practice: Oxygen Transfer and the New ASCE Standard,” Water Environ. Found., pp. 4838–4852, 2006.
- H. Camacho, D. Campos, I. Mercado, N. Cubillán, G. Castellar, “Uso de la cáscara de papa (Solanum tuberosum L.) en la clarificación del agua de la Ciénaga de Malambo,” Investigación e Innovación en Ingenierías., vol. 8, no. 1, pp. 100–111, 2020. DOI: https://doi.org/10.17081/invinno.8.1.3572
- C. J. Obando Gamboa, “Influencia del agua en el desempeño de los pavimentos: lluvia ácida”, Investigación e Innovación en Ingenierías, vol. 5, n.º 2, pp. 190-206, 2017. DOI:https://doi.org/10.17081/invinno.5.2.2761
- T. Itano et al., “Water circulation induced by mechanical aerators in a rectangular vessel for shrimp aquaculture,” Aquac. Eng., vol. 85, pp. 106–113, 2019, DOI: http://doi.org/10.1016/j.aquaeng.2019.03.006.
Referencias
D. Caniani, G. Esposito, R. Gori, and G. Mannina, “Towards A New Decision Support System for Design, Management and Operation of Wastewater Treatment Plants for the Reduction of Greenhouse Gases Emission,” Water, vol. 7, no. 10, pp. 5599–5616, Oct. 2015, DOI: http://doi.org/10.3390/w7105599.
G. Mannina, A. Cosenza, R. Gori, M. Garrido-Baserbac, R. Sobhani, and D. Rosso, “Greenhouse Gas Emissions from Wastewater Treatment Plants on a Plantwide Scale: Sensitivity and Uncertainty Analysis,” J. Environ. Eng., vol. 142, no. 6, p. 04016017, Jun. 2016, DOI: http://doi.org/10.1061/(ASCE)EE.1943-7870.0001082.
T. Xie and C. Wang, “Energy Consumption in Wastewater Treatment Plants in China.,” World Congr. Water,
Clim. Energy, pp. 1–17, 2012, DOI: http://doi.org/10.13140/2.1.1228.9285.
A. Masłoń, “Analysis of energy consumption at the Rzeszów Wastewater Treatment Plant,” E3S Web Conf., vol. 22, p. 00115, Nov. 2017, DOI: http://doi.org/10.1051/e3sconf/20172200115.
J. Daw, K. Hallett, J. DeWolfe, and I. Venner, “Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities,” Tech. Rep. NREL/TP-7A30-53341 January 2012, no. January, p. 25, 2012.
G. Tchobanoglous, F. Louis Burton, and H. D. Stensel, Wastewater Engineering Treatment and Reuse, Fouth Edit. Mc Graw Hill.
S. B. Thakre, L. B. Bhuyar, and S. J. Deshmukh, “Effect of Different Configurations of Mechanical Aerators on Oxygen Transfer and Aeration Efficiency with respect to Power Consumption,” Int. J. Mech. Mechatronics Eng., vol. 2, no. 2, pp. 170–178, 2008.
M. Adel, M. R. Shaalan, R. M. Kamal, and D. S. El Monayeri, “A comparative study of impeller aerators configurations,” Alexandria Eng. J., vol. 58, no. 4, pp. 1431–1438, Dec. 2019, DOI: http://doi.org/10.1016/j.aej.2019.11.014.
W. Huang, C. Wu, and W. Xia, “Oxygen Transfer in High-Speed Surface Aeration Tank for Wastewater Treatment: Full-Scale Test and Numerical Modeling,” J. Environ. Eng., vol. 135, no. 8, pp. 684–691, Aug. 2009, DOI: http://doi.org/10.1061/(ASCE)EE.1943-7870.0000023.
H. M. Issa, “Characterization and improvement of a surface aerator for water treatment,” Université de Toulouse, 2013.
P. Duchène and E. Cotteux, Insufflation d’air fines bulles : application aux stations d’épuration en boues activées des petites collectivitiés. 2002.
M. Roustan and J.-C. Charpentier, Tranferts gaz-liquide dans les procédés de traitement des eaux et des effluents gazeux. Paris,--Londres,--New York, 2003.
J. Mueller, W. C. Boyle, and H. J. Popel, Aeration: principles and practice, 1st ed., vol. 11. Boca Raton, Filadelfia, USA, 2002.
B. Cancino, P. Roth, and M. Reuß, “Design of high efficiency surface aerators,” Aquac. Eng., vol. 31, no. 1–2, pp. 83–98, Aug. 2004, DOI: http://doi.org/10.1016/j.aquaeng.2004.03.002.
B. Cancino, “Design of high efficiency surface aerators,” Aquac. Eng., vol. 31, no. 1–2, pp. 99–115, Aug. 2004, DOI: http://doi.org/10.1016/j.aquaeng.2004.03.003.
S. Bahri, Jufriadi, and H. Anwar, “The Ineffectiveness of Water Splash on Paddlewheel Aerator,” IOP Conf. Ser. Earth Environ. Sci., vol. 268, no. 1, 2019, DOI: http://doi.org/10.1088/1755-1315/268/1/012162.
A. S. of C. Engineers, ASCE Standar: Measurement of Oxygen Transfer in Clean Water (2-06). 2007.
L. Uby, “Next steps in clean water oxygen transfer testing – A critical review of current standards,” Water Res., 2019, DOI: http://doi.org/10.1016/j.watres.2019.03.063.
C. M. Barreto et al., “Sidestream superoxygenation for wastewater treatment: Oxygen transfer in clean water and mixed liquor,” J. Environ. Manage., vol. 219, pp. 125–137, 2018, DOI: http://doi.org/10.1016/j.jenvman.2018.04.035.
H. A. Abdelrahman and C. E. Boyd, “Effects of mechanical aeration on evaporation rate and water temperature in aquaculture ponds,” Aquac. Res., vol. 49, no. 6, pp. 2184–2192, Jun. 2018, DOI: http://doi.org/10.1111/are.13674.
S. M. Roy, S. Moulick, and B. C. Mal, “Design Characteristics of Spiral Aerator,” J. World Aquac. Soc., vol. 48, no. 6, pp. 898–908, 2017, DOI: http://doi.org/10.1111/jwas.12410.
S. Bahri, R. P. A. Setiawan, W. Hermawan, and M. Z. Junior, “Simulation on Blade Geometry and Operational Condition toward Torque Requirement and Drag Force in Paddle Wheel Aerator,” vol. 6, no. 2, pp. 812–816, 2015.
C. D. DeMoyer, E. L. Schierholz, J. S. Gulliver, and S. C. Wilhelms, “Impact of bubble and free surface oxygen transfer on diffused aeration systems,” Water Res., 2003.
L. Tian, Z. Xu, L. Chen, Y. Liu, and T. Zhang, “Study on oxygen gas holdup and kinetics using various types of paddles during marmatite leaching process,” Hydrometallurgy, vol. 180, pp. 158–171, Sep. 2018, DOI: http://doi.org/10.1016/j.hydromet.2018.06.011.
M. K. Stenstrom, S.-Y. (Ben) Leu, and P. Jiang, “Theory to Practice: Oxygen Transfer and the New ASCE Standard,” Water Environ. Found., pp. 4838–4852, 2006.
H. Camacho, D. Campos, I. Mercado, N. Cubillán, G. Castellar, “Uso de la cáscara de papa (Solanum tuberosum L.) en la clarificación del agua de la Ciénaga de Malambo,” Investigación e Innovación en Ingenierías., vol. 8, no. 1, pp. 100–111, 2020. DOI: https://doi.org/10.17081/invinno.8.1.3572
C. J. Obando Gamboa, “Influencia del agua en el desempeño de los pavimentos: lluvia ácida”, Investigación e Innovación en Ingenierías, vol. 5, n.º 2, pp. 190-206, 2017. DOI:https://doi.org/10.17081/invinno.5.2.2761
T. Itano et al., “Water circulation induced by mechanical aerators in a rectangular vessel for shrimp aquaculture,” Aquac. Eng., vol. 85, pp. 106–113, 2019, DOI: http://doi.org/10.1016/j.aquaeng.2019.03.006.