Modelo de medición de ecosistemas inteligentes desarrollados bajo el paradigma del internet de las cosas (IoT)

Share:

Resumen

Objetivo: Proponer un modelo de medición dentro de una arquitectura IoT, con el fin de establecer qué características de calidad son las más convenientes y necesarias para la red de objetos tomando como referencia el modelo jerárquico ISO/IEC 25000 de calidad del software. Metodología: Para el diseño del modelo se realizó una revisión sistemática de literatura que permitió obtener evidencias desde artículos científicos almacenados en repositorios digitales para poder cuantificar los atributos de calidad y determinar las métricas ideales. Como punto de partida se realizaron una serie de preguntas de investigación y una encuesta a un grupo de expertos con conocimiento en IoT para determinar que características y subcaracterísticas de calidad cumplen con los requisitos necesarios. Resultados: Se evidencio que los resultados y resolución de preguntas de investigación planteadas al igual que la encuesta realizada por el grupo de expertos para la validación del modelo responden a los criterios necesarios para un modelo de calidad. Además, con la finalidad de facilitar el entendimiento del modelo que aquí se propone, se realiza una representación gráfica por medio de esquemas preconceptuales. Conclusiones: Por ultimo, este modelo incluye métricas externas para medir atributos de características de calidad en cualquier área del IoT.

Citas

  1. L. Santo et al., “Data Processing on Edge and Cloud: A Performability Evaluation and Sensitivity Analysis,” J Netw Syst Manage, vol. 29, no. 27, pp. 1 - 24, 2021. DOI: https://doi-org.ezproxy.unal.edu. co/10.1007/s10922-021-09592-x
  2. T. Wang et al., “Mobile edge-enabled trust evaluation for the Internet of Things,” Information Fusion, vol. 75, pp. 90 - 100, 2021. DOI: https://doi.org/10.1016/j.inffus.2021.04.007
  3. A. Carvalho et al., “At the Edge of Industry 4.0,” Procedia Computer Science, vol. 155, pp. 276 - 281, 2019. DOI: https://doi.org/10.1016/j.procs.2019.08.039
  4. S. Rizvi et al., “Threat model for securing internet of things (IoT) network at device-level,” Internet of Things, vol. 11, pp. 1 - 21, 2020. DOI: https://doi.org/10.1016/j.iot.2020.100240
  5. N. Bouchemal y S. Kallel, “A Survey: WSN Heterogeneous Architecture Platform for IoT,” Computer Science, pp. 321 - 332, 2019. DOI: https://doi.org/10.1007/978-3-030-19945-6_23
  6. ISO/IEC, Software Engineering - Software product Quality Requirements and Evaluation (SQuaRE) -Guide to SQuaRE. Suiza, 2016, p. 54.
  7. F. Febrero, C. Calero y M. Á. Moraga, “Software reliability modeling based on ISO/IEC SQuaRE,” Information and Software Technology, vol. 70, pp. 18 - 29, 2016. DOI: https://doi.org/10.1016/j. infsof.2015.09.006
  8. C. M. Zapata et al., “Esquemas preconceptuales ejecutables,” Revista Avances en Sistemas e Informática, vol. 8, no. 1, pp. 15 - 24, ene., 2011.
  9. J. M. Rueda, J. Smith y J. M. Portocarrero, "Framework-based security measures for Internet of Thing: A literature review," Open Computer Science, vol. 11, no. 1, pp. 346 - 354, 2021. DOI: https://doi. org/10.1515/comp-2020-0220
  10. J. R. Oviedo, M. Rodriguez y M. Piattini. "Certification of IPavement applications for smart cities a case study," International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE), pp. 244 - 249, abr., 2015.
  11. K. Mi, “A Quality Model for Evaluating IoT Applications,” International Journal of Computer and Electrical Engineering, vol. 8, no. 1, pp. 66 - 76, 2016. DOI: 10.17706/ijcee.2016.8.1.66-76
  12. I. A. Baños, “Metodología para Evaluar la Calidad de un Producto Software de una Implementación de Internet de las Cosas,” Tesis M.Sc., Fac. Ingenierías, Prog. Ing. Sist., Univ. Tecnológica de Bolívar, Cartagena, 2017.
  13. Y. Xuanxia et al., “Security and privacy issues of physical objects in the IoT: Challenges and opportunities,” Digital Communications and Networks, pp. 1 - 12, 2020. DOI: https://doi.org/10.1016/j. dcan.2020.09.001
  14. X. Yao et al., “Security and privacy issues of physical objects in the IoT: Challenges and opportunities,” Digital Communications and Networks, pp. 1 - 12, 2019. DOI: https://doi. org/10.1016/j.dcan.2020.09.001
  15. R. Rani, V. Kashyap y M. Khurana, “Role of IoT-Cloud Ecosystem in Smart Cities: Review and Challenges,” Materials Today, pp. 1 - 5, 2020. DOI: https://doi.org/10.1016/j.matpr.2020.10.054
  16. R. Bharathi et al., “Energy efficient clustering with disease diagnosis model for IoT based sustainable healthcare systems,” Sustainable Computing: Informatics and Systems, vol. 28, pp. 1 - 8, 2020. DOI: https://doi.org/10.1016/j.suscom.2020.100453
  17. S. Nižetić et al., “Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future,” Journal of Cleaner Production, vol. 274, pp. 1 -32, 2020. DOI: https://doi. org/10.1016/j.jclepro.2020.122877
  18. R. S. Pressman, Software Engineering. A Practitioner’s Approach. Asia: McGraw-Hill Education, 2010.
  19. ISO/IEC. Software engineering — Product quality — Part 1: Quality model, Part 2: External metrics, Part 3: Internal metrics, Part 4: Quality in use metrics. International Standar ISO/IEC 9126-1, 2, 3, 4. USA: American National Standards Institute (ANSI), 2002.
  20. B. Kitchenham, Procedures for Performing Systematic Reviews in Software Engineering. Durham: University of Durham. [En línea]. Disponible en https://www.elsevier.com/__data/promis_ misc/525444systematicreviewsguide.pdf
  21. K. Williamson, Chapter 12 - The Delphi method, Research Methods for Students, Academics and Professionals, no. 2, Australia: Chandos Publishing, 2002, pp. 209 - 220.
  22. M. Kim, J.H. Park y N.Y. Lee, “A Quality Model for IoT Service,” Advances in Computer Science and Ubiquitous Computing, vol. 421, pp. 497 - 504, 2016. DOI: https://doi.org/10.1007/978-981-10-3023-9_77
  23. A. Ghotbou y M. Khansari, “VE-CoAP: A constrained application layer protocol for IoT video transmission,” Journal of Network and Computer Applications, vol. 173, pp. 1 - 27, 2020. DOI: https://doi.org/10.1016/j.jnca.2020.102855
  24. P. Arboleya et al., “An IoT open source platform for photovoltaic plants supervition,” International Journal of Electrical Power & Energy Systems, vol. 125, pp. 1 - 11, 2020. DOI: https://doi.org/10.1016/j. ijepes.2020.106540
  25. J. Ariza, et al., “IoT architecture for adaptation to transient devices,” Journal of Parallel and Distributed Computing, vol. 148, pp. 14 - 30, 2021. DOI: https://doi.org/10.1016/j.jpdc.2020.09.012
  26. M. Hasan, et al., “Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches,” Internet of Things, vol. 7, pp. 1 - 14, 2019. DOI: https://doi.org/10.1016/j.iot.2019.100059
  27. E. Geisler y R.N. Kostoff, “The unintended consequences of metrics in technology evaluation,” Journal of Infometrics, vol. 7, no. 2, pp. 103 - 114, 2007. DOI: https://doi.org/10.1016/j.joi.2007.02.002
  28. Poniszewska et al., “Studying usability of AI in the IoT systems/paradigm through embedding NN techniques into mobile smart service system,” Computing 101, pp. 1661 -1685, 2019. DOI: https://doi. org/10.1007/s00607-018-0680-z
  29. D.Ferraris y C. Fernandez, “TrUStAPIS: a trust requirements elicitation method for IoT,” International Journal of Information Security, vol. 19, pp. 111 - 127, 2020. DOI: https://doi.org/10.1007/s10207-019-00438-x
  30. S. Valtolina et al., “Facilitating the Development of IoT Applications in Smart City Platforms,” Computer Science, pp. 83 - 99, 2019. DOI: https://doi.org/10.1007/978-3-030-24781-2_6
  31. H. Seokjun, K. Youngsun y K.J. Gerard, “Developing Usable Interface for Internet of Things (IoT) Security Analysis Software,” Computer Science, pp. 322 - 328, 2019. DOI: https://doi.org/10.1007/978-
  32. - 030-24781-2_6
  33. M. Shafiq et al., “Selection of effective machine learning algorithm and Bot-IoT attacks traffic identification for internet of things in smart city,” Journal Future Generation Computer Systems, vol. 107, pp. 433 - 442, 2020. DOI: https://doi.org/10.1016/j.future.2020.02.017
  34. Y. Liu et al., “Capability-based IoT access control using blockchain,” Journal Digital Communications and Networks, pp. 1 - 7 2020. DOI: https://doi.org/10.1016/j.dcan.2020.10.004
  35. D. Gopika y R. Panjanathan, “Energy efficient routing protocols for WSN based IoT applications: A review,” Journal Materials Today: Proceedings, pp. 1 - 7, 2020. DOI: https://doi.org/10.1016/j. matpr.2020.10.137
  36. B. Costa, P. F. Pires y F. C. Delicato, “Towards the adoption of OMG standards in the development of SOA-based IoT systems,” Journal of Systems and Software, vol. 169, pp. 1 - 29, 2020. DOI: https://doi. org/10.1016/j.jss.2020.110720
  37. A. Singh, A. Payal y S. Bharti, “A walkthrough of the emerging IoT paradigm: Visualizing inside functionalities, key features, and open issues,” Journal of Network and Computer Applications, vol. 143, pp. 111 - 151, 2019. DOI: https://doi.org/10.1016/j.jnca.2019.06.013
  38. H. Zahmatkesh y F. Al-Turjman, “Fog computing for sustainable smart cities in the IoT era: Caching techniques and enabling technologies - an overview,” Sustainable Cities and Society, vol. 59, pp. 1 - 15, 2020. DOI: https://doi.org/10.1016/j.scs.2020.102139
  39. M. Bures et al. (2020, Nov.). A Comprehensive View on Quality Characteristics of the IoT Solutions, EAI International Conference on IoT in Urban Space. 2020. [En línea] (3). Disponible: https://doi-org.ezproxy.unal.edu.co/10.1007/978-3-030-28925-6_6
  40. M. Singh, G. Baranwal, y A. Tripathi, “QoS-Aware Selection of IoT-Based Service,” Arab J Sci Eng, vol. 45, pp. 10033 - 10050, 2020. DOI: https://doi-org.ezproxy.unal.edu.co/10.1007/s13369-020-04601-8
  41. L. Khalid, “Internet of Things (IoT),” Software Architecture for Business, pp.107 -127, 2019. DOI: https://doi-org.ezproxy.unal.edu.co/10.1007/978-3-030-13632-1_7
  42. G. Baranwal, M. Singh, M. y D. P. Vidyarthi, “A framework for IoT service selection,” Journal Supercompu, vol. 76, pp. 2777 - 2814, 2020. DOI: https://doi-org.ezproxy.unal.edu.co/10.1007/s11227-
  43. - 03076-1
  44. K. Kotteswari y A. Bharathi. (2019, Abr.) Spectral Expansion Method for Cloud Reliability Analysis, International Conference on Advances in Computing and Communication Engineering (ICACCE). [En línea]. Disponible: https://ieeexplore.ieee.org/abstract/document/9080012.
  45. M. Shahzad y A. Ganji. (2018, Nov) IoTm: A Lightweight Framework for Fine-Grained Measurements of IoT Performance Metrics, IEEE 26th International Conference on Network Protocols (ICNP). [En línea]. (26). Disponible: https://ieeexplore.ieee.org/document/8526800
  46. S. Li y J. Huang, "GSPN-Based Reliability-Aware Performance Evaluation of IoT Services," IEEE International Conference on Services Computing (SCC), pp. 483 -486, 2017. DOI: 10.1109/SCC.2017.70.
  47. A. J. Rodigues, L. T. Manera y M. Veloso, "Low-cost wireless sensor network applied to real-time monitoring and control of water consumption in residences," Revista Ambiente & Água, vol. 6, no.14, pp. 1 - 10, 2019. DOI: https://doi.org/10.4136/ambi-agua.2407
  48. J. Bauwens et al., “Portability, compatibility and reuse of MAC protocols across different IoT radio platforms,” Ad Hoc Networks, vol. 86, pp. 144 - 153, 2019. DOI: https://doi.org/10.1016/j.adhoc.2018.11.013
  49. D. Huynh-Van et al., “Development and Deployment of an IoT-Based Reconfigurable System: A Case Study for Smart Garden,” Industrial Networks and Intelligent Systems, pp. 243 - 252, 2019. DOI: https://doi-org.ezproxy.unal.edu.co/10.1007/978-3-030-05873-9_20
Cómo citar
[1]
A. Quiroz Estrada, J. A. Jiménez Builes, G. A. Acosta Amaya, A. Espinosa Bedoya, y C. M. Zapata Jaramillo, «Modelo de medición de ecosistemas inteligentes desarrollados bajo el paradigma del internet de las cosas (IoT)», Investigación e Innovación en Ingenierías, vol. 10, n.º 1, pp. 42–56, feb. 2022.

Send mail to Author


Send Cancel

Custom technologies based on your needs

  • MongoDB
  • ElasticSearch
  • Redis
  • Solr
  • Memcached