Derechos de autor 2022 Investigación e Innovación en Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Atención sincronizada de tele rehabilitación en zonas rurales con apoyo de ayudas tecnológicas tele operadas: aplicación a un caso Colombiano
Corresponding Author(s) : Oscar Rubiano Ovalle
Investigación e Innovación en Ingenierías,
Vol. 10 Núm. 2 (2022): Julio-Diciembre
Resumen
Objetivo: Este trabajo de investigación propone y evalúa un modelo para la prestación de servicios de rehabilitación física apoyados en ayudas tecnológicas tele operadas, utilizando Internet como canal de comunicación para el cuidado de la población rural, y tomando como región de estudio, una subregión del occidente de Colombia alrededor el municipio de Santiago de Cali- Colombia. Metodología: A partir de la dinámica generada por la interacción entre el sistema de servicios y los usuarios, caracterizada por la ocurrencia de eventos, se construyó un modelo formal, utilizando una Red Petri Coloreada. Para ello, se propuso una metodología de modelado basada en un enfoque top-Down. Resultados: Se desarrolló y evaluó un modelo del sistema de atención utilizando redes de Petri, a partir de un caso de estudio consistente en el modelo de atención actual que ofrece un proveedor de servicios de salud típico de Cali denominado "Red de salud La Ladera ESE". Las mejoras ponderadas a través del sistema propuesto fueron: mayor objetividad de trazabilidad, rapidez de comunicación, mejor calidad de rehabilitación, así como la capacidad del nuevo sistema para contribuir a una mayor precisión en el diagnóstico inicial y posterior evaluación periódica de recuperación. Conclusiones: El protocolo propuesto basado en el modelo, permitió atender de manera concurrente y precisa el diagnóstico de hasta tres pacientes, mediante la implementación de ayudas tecnológicas para mejorar el soporte diagnóstico y permitir una posterior evaluación periódica de la recuperación del paciente.
Palabras clave
Descargar cita
Endnote/Zotero/Mendeley (RIS)BibTeX
- I . Vargas-Lorenzo, M. Luisa Vázquez-Navarrete, and A. S. Mogollón-Pérez, “Acceso a la atención en salud en Colombia” Revista de Salud Pública, vol. 12, no. 5. Universidad Nacional de Colombia, pp. 701–712, 2010.
- Departamento Administrativo Nacional de Estadística, “Encuesta Nacional de calidad de vida 2015 DANE” 2015.
- K. Guzmán Finol, “Radiografía de la oferta de servicios de salud en Colombia” Doc. Trab. Sobre Econ. Reg. y Urbana 011549, Banco la República - Econ. Reg. Colomb., 2014.
- D. C. Arango, A. A. Martínez, L. R. Molina, S. Diosa, Á. Maria, and S. Cardona, “Calidad de vida de las personas en situación de discapacidad física. Medellín, 2011” Rev. CES Salud Pública, vol. 5, no. 2, pp. 137–146, 2014.
- A. Borchert et al., “Managing Urology Consultations During COVID-19 Pandemic: Application of a Structured Care Pathway” Urology, vol. 141, pp. 7–11, 2020.
- A. A. Hakim, A. S. Kellish, U. Atabek, F. R. Spitz, and Y. K. Hong, “Implications for the use of telehealth in surgical patients during the COVID-19 pandemic.” American journal of surgery, vol. 220, no. 1. pp. 48–49, Jul-2020.
- S. Miocinovic et al., “Recommendations for Deep Brain Stimulation Device Management During a Pandemic.” J. Parkinsons. Dis., vol. 10, no. 3, pp. 903–910, 2020.
- X. Wang, Q. Gui, B. Liu, Z. Jin, and Y. Chen, “Enabling smart personalized healthcare: A hybrid mobile-cloud approach for ECG telemonitoring” IEEE J. Biomed. Heal. Informatics, vol. 18, no. 3, pp. 739–745, 2014.
- C. D. Capua, A. Meduri, and R. Morello, “A remote doctor for homecare and medical diagnoses on cardiac patients by an adaptive ECG analysis” IEEE Int. Work. Med. Meas. Appl. MeMeA, pp. 31–36, 2009.
- R. S. Tolentino, J. H. Hwang, S. H. Kim, Y. T. Kim, G. C. Park, and D. J. Hwang, “A proposal of building an early-stage diagnosis system of first-aid through wireless Internet” in Proc. - Int. Conf. Converg. Hybrid Inf. Technol. ICHIT 2008, 2008, pp. 70–74.
- M. B. Doumbouya, B. Kamsu-Foguem, H. Kenfack, and C. Foguem, “Telemedicine using mobile telecommunication: Towards syntactic interoperability in teleexpertise” Telemat. Informatics, vol. 31, no. 4, pp. 648–659, 2014.
- B. Kamsu-Foguem, P. F. Tiako, L. P. Fotso, and C. Foguem, “Modeling for effective collaboration in telemedicine,” Telemat. Informatics, vol. 32, no. 4, pp. 776–786, 2014.
- J. Bae and M. Tomizuka, “A tele-monitoring system for gait rehabilitation with an inertial measurement unit and a shoe-type ground reaction force sensor”, Mechatronics, vol. 23, no. 6, pp. 646–651, 2013.
- Y. Ishibashi, Hara, and I. Nakajima, “Development of telemedicine education systems for web use” Heal, pp. 221–223, 2006.
- P. Meso, V. W. A. Mbarika, and S. P. Sood, “An Overvie17. W. Durfee, J. Carey, D. Nuckley, and J. Deng, “Design and implementation of a home stroke telerehabilitation system” in Proc. 31st Annu Int. Conf. IEEE Eng. Med. Biol. Soc. Eng. Futur. Biomed. EMBC, 2009, pp. 2422–2425.
- M. Avraam, M. Horodinca, P. Letier, and A. Preumont, “Portable smart wrist rehabilitation device driven by rotational MR-fluid brake actuator for telemedecine applications” in IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS, 2008, pp. 1441–1446.
- J . Finkelstein and I. Jeong, “Remotely controlled cycling exercise system for home-based telerehabilitation” in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, 2013, pp. 7310–7313.
- A. Karime, H. Al-Osman, J. M. Alja’Am, W. Gueaieb, and A. E. Saddik, “Tele-wobble: A telerehabilitation wobble board for lower extremity therapy” IEEE Trans. Instrum. Meas, vol. 61, no. 7, pp. 1816–1824, 2012.
- L. Guo, L. Yu, and Q. Fang, “Upper limb motion recognition for unsupervised stroke rehabilitation based on Support Vector Machine” in International Symposium on Bioelectronics and Bioinformations 2011, Suzhou, 2011, pp. 37–40.
- D. M. Brennan, P. S. Lum, G. Uswatte, E. Taub, B. M. Gilmore, and J. Barman, “A telerehabilitation platform for home-based automated therapy of arm function” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2011, pp. 1819–1822.
- W. S. Harwin, T. Rahman, and R. A. Foulds, “Review of design issues in rehabilitation robotics with reference to North American research”, IEEE Trans. Rehabil. Eng, vol. 3, no. 1, pp. 3–13, 1995.
- B. Brüggemann, T. Röhling, and J. Welle, “Coupled Human-machine Tele-manipulation” Procedia Manuf., vol. 3, pp. 998–1005, 2015.
- M. Huber, B. Rabin, C. Docan, G. Burdea, M. Abdelbaky, and M. Golomb, “Feasibility of modified remotely-monitored in-home gaming technology for improving hand function in adolescents with cerebral palsy” IEEE Trans Inf Technol Biomed, vol. 14, no. 2, pp. 526–534, 2010.
- Y. Rybarczyk, E. Colle, and P. Hoppenot, “Contribution of neuroscience to the teleoperation of rehabilitation robot” in IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia, 2002, p. 6.
- S. J. Lee, S. C. Lee, and H. S. Ahn, “Design and control of tele-matched surgery robot” Mechatronics, vol. 24, no. 5, pp. 395–406, 2014.
- K. Ganapathy and V. Vaidehi, “Medical intelligence for quality improvement in Service Oriented Architecture” in 2011 International Conference on Recent Trends in Information Technology (ICRTIT), Chennai, Tamil Nadu, 2011, pp. 161–166.
- M. Abousharkh and H. Mouftah, “A SOA-based middleware for WBAN”, IEEE International Symposium on Medical Measurements and Applications, Bari, 2011, pp. 257–260.
- M. Abousharkh and H. Mouftah, “XMPP-enabled SOA-driven middleware for remote patient monitoring system”, in International Conference on Information Technology and e-Services, Sousse, 2012, pp. 1–5.
- CPN Group. AIS group., “Coloured Petri Nets cpn tools.” Eindhoven University of Technology, The Netherlands.
- “ ÁREA DE INFLUENCIA.” [Online]. Available: https://www.saludladera.gov.co/nosotros/area-de-influencia. [Accessed: 14-Jan-2021].w of Potential Factors for Effective Telemedicine Transfer to Sub-Saharan Africa” vol. 13, no. 5. pp. 734–739, 2009.
- J . C. Perry, H. Zabaleta, A. Belloso, C. Rodriguez-De-Pablo, F. I. Cavallaro, and T. Keller, “ArmAssist: Development of a functional prototype for at-home telerehabilitation of post-stroke arm impairment” in Proc. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics, 2012, pp. 1561–1566.
- “SIPOC Diagram.” [Online]. Available: https://www.isixsigma.com/tools-templates/sipoc-copis/sipoc-diagram/. [Accessed: 17-Dec-2020].
- C. Pardo, E. Suescún, H. Jojoa, R. Zambrano, y W. Ortega, "Modelo de referencia para la adopción e implementación de Scrum en la industria de software", Investigación e Innovación en Ingenierías, vol. 8, n.º 3, pp. 14-28, 2020. https://doi.org/10.17081/invinno.8.3.4700
- A. M. Valencia, “Diseño e implementación de un sistema de gestión de la operación de una ayuda técnica multifuncional, pasiva-activa, teleoperada vía internet. Caso piloto rodilla” Universidad del Valle, Cali, Colombia, 2017.
Referencias
I . Vargas-Lorenzo, M. Luisa Vázquez-Navarrete, and A. S. Mogollón-Pérez, “Acceso a la atención en salud en Colombia” Revista de Salud Pública, vol. 12, no. 5. Universidad Nacional de Colombia, pp. 701–712, 2010.
Departamento Administrativo Nacional de Estadística, “Encuesta Nacional de calidad de vida 2015 DANE” 2015.
K. Guzmán Finol, “Radiografía de la oferta de servicios de salud en Colombia” Doc. Trab. Sobre Econ. Reg. y Urbana 011549, Banco la República - Econ. Reg. Colomb., 2014.
D. C. Arango, A. A. Martínez, L. R. Molina, S. Diosa, Á. Maria, and S. Cardona, “Calidad de vida de las personas en situación de discapacidad física. Medellín, 2011” Rev. CES Salud Pública, vol. 5, no. 2, pp. 137–146, 2014.
A. Borchert et al., “Managing Urology Consultations During COVID-19 Pandemic: Application of a Structured Care Pathway” Urology, vol. 141, pp. 7–11, 2020.
A. A. Hakim, A. S. Kellish, U. Atabek, F. R. Spitz, and Y. K. Hong, “Implications for the use of telehealth in surgical patients during the COVID-19 pandemic.” American journal of surgery, vol. 220, no. 1. pp. 48–49, Jul-2020.
S. Miocinovic et al., “Recommendations for Deep Brain Stimulation Device Management During a Pandemic.” J. Parkinsons. Dis., vol. 10, no. 3, pp. 903–910, 2020.
X. Wang, Q. Gui, B. Liu, Z. Jin, and Y. Chen, “Enabling smart personalized healthcare: A hybrid mobile-cloud approach for ECG telemonitoring” IEEE J. Biomed. Heal. Informatics, vol. 18, no. 3, pp. 739–745, 2014.
C. D. Capua, A. Meduri, and R. Morello, “A remote doctor for homecare and medical diagnoses on cardiac patients by an adaptive ECG analysis” IEEE Int. Work. Med. Meas. Appl. MeMeA, pp. 31–36, 2009.
R. S. Tolentino, J. H. Hwang, S. H. Kim, Y. T. Kim, G. C. Park, and D. J. Hwang, “A proposal of building an early-stage diagnosis system of first-aid through wireless Internet” in Proc. - Int. Conf. Converg. Hybrid Inf. Technol. ICHIT 2008, 2008, pp. 70–74.
M. B. Doumbouya, B. Kamsu-Foguem, H. Kenfack, and C. Foguem, “Telemedicine using mobile telecommunication: Towards syntactic interoperability in teleexpertise” Telemat. Informatics, vol. 31, no. 4, pp. 648–659, 2014.
B. Kamsu-Foguem, P. F. Tiako, L. P. Fotso, and C. Foguem, “Modeling for effective collaboration in telemedicine,” Telemat. Informatics, vol. 32, no. 4, pp. 776–786, 2014.
J. Bae and M. Tomizuka, “A tele-monitoring system for gait rehabilitation with an inertial measurement unit and a shoe-type ground reaction force sensor”, Mechatronics, vol. 23, no. 6, pp. 646–651, 2013.
Y. Ishibashi, Hara, and I. Nakajima, “Development of telemedicine education systems for web use” Heal, pp. 221–223, 2006.
P. Meso, V. W. A. Mbarika, and S. P. Sood, “An Overvie17. W. Durfee, J. Carey, D. Nuckley, and J. Deng, “Design and implementation of a home stroke telerehabilitation system” in Proc. 31st Annu Int. Conf. IEEE Eng. Med. Biol. Soc. Eng. Futur. Biomed. EMBC, 2009, pp. 2422–2425.
M. Avraam, M. Horodinca, P. Letier, and A. Preumont, “Portable smart wrist rehabilitation device driven by rotational MR-fluid brake actuator for telemedecine applications” in IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS, 2008, pp. 1441–1446.
J . Finkelstein and I. Jeong, “Remotely controlled cycling exercise system for home-based telerehabilitation” in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, 2013, pp. 7310–7313.
A. Karime, H. Al-Osman, J. M. Alja’Am, W. Gueaieb, and A. E. Saddik, “Tele-wobble: A telerehabilitation wobble board for lower extremity therapy” IEEE Trans. Instrum. Meas, vol. 61, no. 7, pp. 1816–1824, 2012.
L. Guo, L. Yu, and Q. Fang, “Upper limb motion recognition for unsupervised stroke rehabilitation based on Support Vector Machine” in International Symposium on Bioelectronics and Bioinformations 2011, Suzhou, 2011, pp. 37–40.
D. M. Brennan, P. S. Lum, G. Uswatte, E. Taub, B. M. Gilmore, and J. Barman, “A telerehabilitation platform for home-based automated therapy of arm function” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2011, pp. 1819–1822.
W. S. Harwin, T. Rahman, and R. A. Foulds, “Review of design issues in rehabilitation robotics with reference to North American research”, IEEE Trans. Rehabil. Eng, vol. 3, no. 1, pp. 3–13, 1995.
B. Brüggemann, T. Röhling, and J. Welle, “Coupled Human-machine Tele-manipulation” Procedia Manuf., vol. 3, pp. 998–1005, 2015.
M. Huber, B. Rabin, C. Docan, G. Burdea, M. Abdelbaky, and M. Golomb, “Feasibility of modified remotely-monitored in-home gaming technology for improving hand function in adolescents with cerebral palsy” IEEE Trans Inf Technol Biomed, vol. 14, no. 2, pp. 526–534, 2010.
Y. Rybarczyk, E. Colle, and P. Hoppenot, “Contribution of neuroscience to the teleoperation of rehabilitation robot” in IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia, 2002, p. 6.
S. J. Lee, S. C. Lee, and H. S. Ahn, “Design and control of tele-matched surgery robot” Mechatronics, vol. 24, no. 5, pp. 395–406, 2014.
K. Ganapathy and V. Vaidehi, “Medical intelligence for quality improvement in Service Oriented Architecture” in 2011 International Conference on Recent Trends in Information Technology (ICRTIT), Chennai, Tamil Nadu, 2011, pp. 161–166.
M. Abousharkh and H. Mouftah, “A SOA-based middleware for WBAN”, IEEE International Symposium on Medical Measurements and Applications, Bari, 2011, pp. 257–260.
M. Abousharkh and H. Mouftah, “XMPP-enabled SOA-driven middleware for remote patient monitoring system”, in International Conference on Information Technology and e-Services, Sousse, 2012, pp. 1–5.
CPN Group. AIS group., “Coloured Petri Nets cpn tools.” Eindhoven University of Technology, The Netherlands.
“ ÁREA DE INFLUENCIA.” [Online]. Available: https://www.saludladera.gov.co/nosotros/area-de-influencia. [Accessed: 14-Jan-2021].w of Potential Factors for Effective Telemedicine Transfer to Sub-Saharan Africa” vol. 13, no. 5. pp. 734–739, 2009.
J . C. Perry, H. Zabaleta, A. Belloso, C. Rodriguez-De-Pablo, F. I. Cavallaro, and T. Keller, “ArmAssist: Development of a functional prototype for at-home telerehabilitation of post-stroke arm impairment” in Proc. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics, 2012, pp. 1561–1566.
“SIPOC Diagram.” [Online]. Available: https://www.isixsigma.com/tools-templates/sipoc-copis/sipoc-diagram/. [Accessed: 17-Dec-2020].
C. Pardo, E. Suescún, H. Jojoa, R. Zambrano, y W. Ortega, "Modelo de referencia para la adopción e implementación de Scrum en la industria de software", Investigación e Innovación en Ingenierías, vol. 8, n.º 3, pp. 14-28, 2020. https://doi.org/10.17081/invinno.8.3.4700
A. M. Valencia, “Diseño e implementación de un sistema de gestión de la operación de una ayuda técnica multifuncional, pasiva-activa, teleoperada vía internet. Caso piloto rodilla” Universidad del Valle, Cali, Colombia, 2017.