Derechos de autor 2022 Investigación e Innovación en Ingenierías

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Síntesis y caracterización de NiMo5W/Al2O3 modificado con ZnO para la hidrodesnitrogenación de Indol
Corresponding Author(s) : Yeiny Muñoz Montes
Investigación e Innovación en Ingenierías,
Vol. 10 Núm. 2 (2022): Julio-Diciembre
Resumen
Objetivo: En este estudio se evaluó el efecto de la modificación con óxido de zinc del soporte convencional en catalizadores de hidrodesulfuración (HDS) a base polioxometalato Anderson-Evans de NiMo5W. Metodología: Los catalizadores fueron sintetizados por el método de co-precipitación del polioxometalato Anderson-Evans de NiMo5W sobre Al2O3. Los catalizadores se caracterizaron por FRX, MEB/EDS, CHONS, propiedades texturales, FT-IR, Raman y titulación potenciométrica con n-butilamina. Resultados: La MEB reveló tamaños de agregados de partículas para NiMo5W/γ-Al2O3 entre 0,7 μm y 4,1 μm, y para NiMo5W/γ-Al2O3-ZnO entre 0,5 μm y 3,5 μm. Las isotermas fueron de tipo IV característica de materiales mesoporosos, sus áreas específicas fueron γ-Al2O3 (207 m2/g), γ-Al2O3-ZnO (185 m2/g), NiMo5W/γ-Al2O3 (97 m2/g) y NiMo5W/γ-Al2O3-ZnO (121 m2/g). FTIR demostró que la inclusión de ZnO en el soporte promueve una mejor adsorción del polioxometalato en la superficie. Raman de los catalizadores solo mostró modos característicos del MoS2 A1g: (378 cm-1) y (404 cm-1). La titulación potenciométrica con n-butilamina indicó mayor densidad de sitios ácidos para NiMo5W/γ-Al2O3 (20,6 μmol/m2) frente a NiMo5W/γ-Al2O3-ZnO (15,2 μmol/m2). El catalizador NiMo5W/γ-Al2O3-ZnO (95%/67%) presentó mayor conversión de indol e HDN que NiMo5W/γ-Al2O3 (85%/55%). Conclusiones: La reacción de hidrodesnitrogenación de Indol siguió el mecanismo de reacción reportado en la literatura. La reacción de hidrodesnitrogenación de Indol siguió el mecanismo de reacción reportado en la literatura. De ahí que, el catalizador NiMo5W/γ-Al2O3-ZnO (95%/67%) presentó mayor conversión de indol e HDN que NiMo5W/γ-Al2O3 (85%/55%).
Palabras clave
Descargar cita
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. R. Anderson y M. Boudart, Catalysis: Science and Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996.
- W. Han, H. Nie, X. Long, D. Li, “A study on the role of Ni atoms in the HDN activity of NiMoS2/Al2O3 catalyst”, Appl. Catal. A Gen., vol. 593, Mar. 2020. https://doi.org/10.1016/j.apcata.2020.117458
- R. Prins, “Catalytic hydrodenitrogenation”, J. Adv. Catal. Sci. Technol., vol. 46, pp. 399-464, 2001. https://doi.org/10.1016/S0360-0564(02)46025-7
- Ministerio de Ambiente y Desarrollo Sostenible, y Ministerio de Minas y Energías, Resolución 90963 (2014) y 40619 (2017). pp. 1-3,
- F. Rashidi, T. Sasaki, A. M. Rashidi, A. Nemati Kharat, y K. J. Jozani, «Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: Impact of support, phosphorus, and/or boron on the structure and catalytic activity», J. Catal., vol. 299, pp. 321-335, mar. 2013, doi: 10.1016/j.jcat.2012.11.012.
- M. Breysse, J.L. Portefaix, M. Vrinat, Support effects on hydrotreating catalysts. Catal. Today 10,(1991), 489.
- R. Palcheva, L. KaluZˇA, A. Spojakina, K. JirÁTovÁ, G. Tyuliev, Chin. NiMo/γ-Al2O3 Catalysts from Ni Heteropolyoxomolybdate and Effect of Alumina Modification by B, Co, or Ni J. Catal. 33, (2012), 952
- Jirátová, M. Kraus, Effect of support properties on the catalytic activity of HDS catalysts Appl. Catal. 27, (1986), 21-29.
- A. Polo, E. Puello-Polo, C. Diaz-Uribe, “Influence of Ce in the thiophene hydrodesulfurization using catalytic precursor of alumina supported Anderson-type nickel heteropolyoxomolybdates”, Prospectiva, Vol 15, 74-82, 2017. https://doi.org/10.15665/rp.v15i1.755
- M. Borque, A. Lopez-Agudo, E. Olguın, M. Vrinat, L. Cedeno, J. Ramırez, “Catalytic activities of Co (Ni) Mo/TiO2–Al2O3 catalysts in gasoil and thiophene HDS and pyridine HDN: Effect of the TiO2–Al2O3 composition”, Appl. Catal. A Gen., Vol. 180, pp. 53-61, 1991. https://doi.org/10.1016/S0926-860X(98)00377-9
- M. Jones, G. Hutchings, D. Willock, J. Scott, S. Taylor, “Zinc promoted alumina catalysts for the fluorination of chlorofluorocarbons”, J. Catal., Vol. 364, pp. 102-111, 2018. https://doi.org/10.1016/j. jcat.2018.05.012
- S. Schmidt, M. Peurla, N. Kumar, K. Eränen, Y. Murzin, Y. Salmi, “Preparation of selective ZnCl2/alumina catalysts for methyl chloride synthesis: Influence of pH, precursor and zinc loading”, Appl. Catal. A: General, Vol. 490, pp. 117-127, Ene. 2015. https://doi.org/10.1016/j.apcata.2014.11.008
- R. Santos, D. Freire, D. De Aguiar, L. Lau, A. Pontes, “Thiophene cracking on zinc modified beta zeolite”, Mol. Catal., Vol. 470, pp. 112-119, 2019. https://doi.org/10.1016/j.mcat.2019.04.001
- J. Biscardi, G. Meitzner, E. Iglesia, “Structure and Density of Active Zn Species in Zn/H-ZSM5 Propane Aromatization Catalysts”, J. Catal., Vol. 179, pp. 192-202, Oct. 1998. https://doi.org/10.1006/jcat.1998.2177
- H. Liu, C. Liu, C. Yin, Y. Chai, Y. Li, D. Liu, X. Li, Y. Wang, “Preparation of highly active unsupported nickel–zinc–molybdenum catalysts for the hydrodesulfurization of dibenzothiophene”, Appl. Catal. B: Environ., Vol. 174, pp. 264-276, Sep. 2015. https://doi.org/10.1016/j.apcatb.2015.02.009
- Y. Chen, L. Wang, Y. Zhang, T. Liu, X. Liu, Z. Jiang, C. Li, “A new multi–metallic bulk catalyst with high hydrodesulfurization activity of 4,6–DMDBT prepared using layered hydroxide salts as structural templates”, Appl. Catal. A: Gen., Vol. 474, pp. 69-77, Mar. 2015. https://doi.org/10.1016/j. apcata.2013.09.002
- Topsoe, H., Clausen, B.S., Massoth, F.E. Hydrotreating Catalysis. Anderson JR, Boudart M. (eds) Catálisis.Catálisis-Ciencia y Tecnología, vol 11. Springer, Berlín, Heidelberg.1996.
- L. Zhang, G. Karakas, U.S. Ozkan, NiMoS/γ-Al2O3Catalysts: The Nature and the Aging Behavior of Active Sites in HDN Reactions. J. Catal. 178, (1998), 457–465.
- Kim, S.C, Massoth, F.E. Kinetics of the Hydrodenitrogenation of Indole. Ind. Eng. Chem. Res. 39, (2000), 1705-1712
- Nguyen, T.M., Pirngruber, G.,mChainet, Fayolle, T.M., Geantet, C. F.,Indole Hydrodenitrogenation over Alumina and Silica–Alumina-Supported Sulfide Catalysts Comparison with Quinoline. Ind. Eng. Chem. Res. 56, (2017), 11088−11099
- Ledesma, CB., Anunziata, A.O., Beltramonte, RA. HDN of indole over Ir-modified Ti-SBA-15Applied Catalysis B: Environmental 192, (2016), 220–233.
- K. Castillo, M. Rueda y E. Puello-Polo, “SÍNTESIS Y CARACTERIZACIÓN DE (NH4)4[NiMo6O24H6]•7H2O/V2O5/Al2O3–ZnO PARA LA DESULFURACIÓN OXIDATIVA DE MEZCLAS DE DIBENZOTIOFENO)”, Prospectiva, Vol. 20 N° 2, 2022. http:://doi.org/10.15665/rp.v20i2.2944.
- Y. Chen, L. Wang, X. Liu, T. Liu, B. Huang B, P. Li, Z. Jiang, C. Li,“Hydrodesulfurization of 4,6-DMDBT on multi-metallic bulk catalyst NiAlZnMoW: Effect of Zn”, Appl. Catal. A: Gen., Vol. 504, pp. 319-327, Sep. 2015. https://doi.org/10.1016/j.apcata.2015.01.039
- J. A. Mendoza-Nieto, A. Vizueth-Montes de Oca, L. A. Calzada, T. E. Klimova, “Trimetallic NiMoW and CoMoW catalysts supported on SBA-15 modified with titania or zirconia for deep hydrodesulfurization”, Catal. Today, Jun. 2019. https://doi.org/10.1016/j.cattod.2019.06.023
- Y. Yi, B. Zhang, X. Jin, L. Wang, C. Williams, G. Xiong, D. Su, C. Liang, “Unsupported NiMoW sulfide catalysts for hydrodesulfurization of dibenzothiophene by thermal decomposition of thiosalts”, J. Mol. Catal A: Chem., Vol. 351, pp. 120-127, Dec. 2011. https://doi.org/10.1016/j.molcata.2011.09.024
- Y. J. Muñoz, Y. C. Leones, “síntesis y caracterización de NiMoW soportado en Al2O3 modificada con ZnO aplicado a la hidrodesnitrogenación de indol”, Tesis Pregrado., Facultad Ciencias Básicas., Universidad del Atlántico, Barranquilla, 2020.
- S. J. Gregg, K. S. W. Sing, “Adsorption, Surface Area and Porosity”, Academic Press, Vol. 2, London 1982. https://doi.org/10.1002/bbpc.19820861019
- E. Puello-Polo, E. Marquez, J. L. Brito, “One-pot synthesis of Nb-modified Al2O3 support for NiMo hydrodesulfurization catalysts”, J. of sol-gel Sci. and Tech., Sep. 2018. https://doi.org/10.1007/s10971-
- - 4792-x
- V. Vega-Garita, M. Matamoros-Quesada, J. Vega-Baudrit, “Síntesis de CeO2: propiedades del sol-gel y caracterización de las nanopartículas obtenidas”, Tecnología en Marcha., Vol. 27, pp. 62-69, Sep. 2014. https://doi.org/10.18845/tm.v27i3.2067
- E. Puello, Y. Díaz, J. L. Brito, “Effect of the structural modification by carbiding of alumina supported Anderson-type (NH4)4[NiMo6−xWxO24H6]·5H2O on hydrodesulfurization, hydrodechlorination and selective oxidation”, Catal. Communications., Vol. [29] pp. 89-93, Aug. 2017. https://doi.org/10.1016/j. catcom.2017.05.017
- C. Thomazeau, C. Geantet, M. Lacroix, V. Harle, S. Benazeth, C. Marhic, M. Danot, “Two Cation Disulfide Layers in the WxMo(1−x)S2 Lamellar Solid Solution”, J. of Solid-State Chem., Vol. 160, pp. 147-155, Aug. 2001. 160. https://doi.org/10.1006/jssc.2001.9208
- L. Zhang, Y. Li, H. Guo, H. Zhang, N. Zhang, T. Hayat, Y. Sun, “Decontamination of U(VI) on graphene oxide/Al2O3 composites investigated by XRD, FT-IR and XPS techniques”, Env. Pollution, Vol. 248, pp. 332-338, May. 2019. https://doi.org/10.1016/j.envpol.2019.01.126
- R. Huirache-Acuña R, E. Rivera-Muñoz, B. Pawelec, M. Ostrooumov, R. Maya-Yescas, J. Ricoa, “The use of a natural Mexican zeolite as support of NiMoW sulphide hydrotreating catalysts”, Catal. Today, Vol. 220-222, pp. 301-309, Mar. 2014. https://doi.org/10.1016/j.cattod.2013.07.019
- C. Wu, X. Chang, T. Chu, H. Chen, C. Wu, S. Lin, “Establishment of 2D Crystal Heterostructures by Sulfurization of Sequential Transition Metal Depositions: Preparation, Characterization, and Selective Growth”, Nano lett, Vol. 16, pp. 7093-7097, Nov. 2016. https://doi.org/10.1016/10.1021/acs. nanolett.6b03353
- Julio-Julio, J. J., Puello-Polo, E., & Brito, J. (2016). Synthesis and characterization of alumina supported Ni-Mo (W) Anderson type heteropolyoxoanions: Thiophene hydrodesulfurization activity. Iteckne, 13(1), 36-43.
- R. Cid, G. Pecchi, “Potentiometric method for determining the number and relative strength of acid sites in colored catalysts”, Appl. Catal., Vol. 14, pp. 15-21, 1895. https://doi.org/10.1016/S0166-9834(00)84340-7
- M. Nguyen, G. Pirngruber, F. Albrieux, F. Chainet, M. Tayakout-Fayolle, C. Geantet, “Molecular-Level Insights into Coker/Straight-Run Gas Oil Hydrodenitrogenation by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry”, Energy Fuels, Vol. 33, pp. 1467-1472, Mar. 2019. https://doi.org/10.1021/acs.energyfuels.8b04432.
- Y. Zhang et al., «Ultra-deep desulfurization via reactive adsorption on Ni/ZnO: The effect of ZnO particle size on the adsorption performance», Appl. Catal. B Environ., vol. 119-120, pp. 13-19, may 2012, doi: 10.1016/j.apcatb.2012.02.004.
Referencias
J. R. Anderson y M. Boudart, Catalysis: Science and Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996.
W. Han, H. Nie, X. Long, D. Li, “A study on the role of Ni atoms in the HDN activity of NiMoS2/Al2O3 catalyst”, Appl. Catal. A Gen., vol. 593, Mar. 2020. https://doi.org/10.1016/j.apcata.2020.117458
R. Prins, “Catalytic hydrodenitrogenation”, J. Adv. Catal. Sci. Technol., vol. 46, pp. 399-464, 2001. https://doi.org/10.1016/S0360-0564(02)46025-7
Ministerio de Ambiente y Desarrollo Sostenible, y Ministerio de Minas y Energías, Resolución 90963 (2014) y 40619 (2017). pp. 1-3,
F. Rashidi, T. Sasaki, A. M. Rashidi, A. Nemati Kharat, y K. J. Jozani, «Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: Impact of support, phosphorus, and/or boron on the structure and catalytic activity», J. Catal., vol. 299, pp. 321-335, mar. 2013, doi: 10.1016/j.jcat.2012.11.012.
M. Breysse, J.L. Portefaix, M. Vrinat, Support effects on hydrotreating catalysts. Catal. Today 10,(1991), 489.
R. Palcheva, L. KaluZˇA, A. Spojakina, K. JirÁTovÁ, G. Tyuliev, Chin. NiMo/γ-Al2O3 Catalysts from Ni Heteropolyoxomolybdate and Effect of Alumina Modification by B, Co, or Ni J. Catal. 33, (2012), 952
Jirátová, M. Kraus, Effect of support properties on the catalytic activity of HDS catalysts Appl. Catal. 27, (1986), 21-29.
A. Polo, E. Puello-Polo, C. Diaz-Uribe, “Influence of Ce in the thiophene hydrodesulfurization using catalytic precursor of alumina supported Anderson-type nickel heteropolyoxomolybdates”, Prospectiva, Vol 15, 74-82, 2017. https://doi.org/10.15665/rp.v15i1.755
M. Borque, A. Lopez-Agudo, E. Olguın, M. Vrinat, L. Cedeno, J. Ramırez, “Catalytic activities of Co (Ni) Mo/TiO2–Al2O3 catalysts in gasoil and thiophene HDS and pyridine HDN: Effect of the TiO2–Al2O3 composition”, Appl. Catal. A Gen., Vol. 180, pp. 53-61, 1991. https://doi.org/10.1016/S0926-860X(98)00377-9
M. Jones, G. Hutchings, D. Willock, J. Scott, S. Taylor, “Zinc promoted alumina catalysts for the fluorination of chlorofluorocarbons”, J. Catal., Vol. 364, pp. 102-111, 2018. https://doi.org/10.1016/j. jcat.2018.05.012
S. Schmidt, M. Peurla, N. Kumar, K. Eränen, Y. Murzin, Y. Salmi, “Preparation of selective ZnCl2/alumina catalysts for methyl chloride synthesis: Influence of pH, precursor and zinc loading”, Appl. Catal. A: General, Vol. 490, pp. 117-127, Ene. 2015. https://doi.org/10.1016/j.apcata.2014.11.008
R. Santos, D. Freire, D. De Aguiar, L. Lau, A. Pontes, “Thiophene cracking on zinc modified beta zeolite”, Mol. Catal., Vol. 470, pp. 112-119, 2019. https://doi.org/10.1016/j.mcat.2019.04.001
J. Biscardi, G. Meitzner, E. Iglesia, “Structure and Density of Active Zn Species in Zn/H-ZSM5 Propane Aromatization Catalysts”, J. Catal., Vol. 179, pp. 192-202, Oct. 1998. https://doi.org/10.1006/jcat.1998.2177
H. Liu, C. Liu, C. Yin, Y. Chai, Y. Li, D. Liu, X. Li, Y. Wang, “Preparation of highly active unsupported nickel–zinc–molybdenum catalysts for the hydrodesulfurization of dibenzothiophene”, Appl. Catal. B: Environ., Vol. 174, pp. 264-276, Sep. 2015. https://doi.org/10.1016/j.apcatb.2015.02.009
Y. Chen, L. Wang, Y. Zhang, T. Liu, X. Liu, Z. Jiang, C. Li, “A new multi–metallic bulk catalyst with high hydrodesulfurization activity of 4,6–DMDBT prepared using layered hydroxide salts as structural templates”, Appl. Catal. A: Gen., Vol. 474, pp. 69-77, Mar. 2015. https://doi.org/10.1016/j. apcata.2013.09.002
Topsoe, H., Clausen, B.S., Massoth, F.E. Hydrotreating Catalysis. Anderson JR, Boudart M. (eds) Catálisis.Catálisis-Ciencia y Tecnología, vol 11. Springer, Berlín, Heidelberg.1996.
L. Zhang, G. Karakas, U.S. Ozkan, NiMoS/γ-Al2O3Catalysts: The Nature and the Aging Behavior of Active Sites in HDN Reactions. J. Catal. 178, (1998), 457–465.
Kim, S.C, Massoth, F.E. Kinetics of the Hydrodenitrogenation of Indole. Ind. Eng. Chem. Res. 39, (2000), 1705-1712
Nguyen, T.M., Pirngruber, G.,mChainet, Fayolle, T.M., Geantet, C. F.,Indole Hydrodenitrogenation over Alumina and Silica–Alumina-Supported Sulfide Catalysts Comparison with Quinoline. Ind. Eng. Chem. Res. 56, (2017), 11088−11099
Ledesma, CB., Anunziata, A.O., Beltramonte, RA. HDN of indole over Ir-modified Ti-SBA-15Applied Catalysis B: Environmental 192, (2016), 220–233.
K. Castillo, M. Rueda y E. Puello-Polo, “SÍNTESIS Y CARACTERIZACIÓN DE (NH4)4[NiMo6O24H6]•7H2O/V2O5/Al2O3–ZnO PARA LA DESULFURACIÓN OXIDATIVA DE MEZCLAS DE DIBENZOTIOFENO)”, Prospectiva, Vol. 20 N° 2, 2022. http:://doi.org/10.15665/rp.v20i2.2944.
Y. Chen, L. Wang, X. Liu, T. Liu, B. Huang B, P. Li, Z. Jiang, C. Li,“Hydrodesulfurization of 4,6-DMDBT on multi-metallic bulk catalyst NiAlZnMoW: Effect of Zn”, Appl. Catal. A: Gen., Vol. 504, pp. 319-327, Sep. 2015. https://doi.org/10.1016/j.apcata.2015.01.039
J. A. Mendoza-Nieto, A. Vizueth-Montes de Oca, L. A. Calzada, T. E. Klimova, “Trimetallic NiMoW and CoMoW catalysts supported on SBA-15 modified with titania or zirconia for deep hydrodesulfurization”, Catal. Today, Jun. 2019. https://doi.org/10.1016/j.cattod.2019.06.023
Y. Yi, B. Zhang, X. Jin, L. Wang, C. Williams, G. Xiong, D. Su, C. Liang, “Unsupported NiMoW sulfide catalysts for hydrodesulfurization of dibenzothiophene by thermal decomposition of thiosalts”, J. Mol. Catal A: Chem., Vol. 351, pp. 120-127, Dec. 2011. https://doi.org/10.1016/j.molcata.2011.09.024
Y. J. Muñoz, Y. C. Leones, “síntesis y caracterización de NiMoW soportado en Al2O3 modificada con ZnO aplicado a la hidrodesnitrogenación de indol”, Tesis Pregrado., Facultad Ciencias Básicas., Universidad del Atlántico, Barranquilla, 2020.
S. J. Gregg, K. S. W. Sing, “Adsorption, Surface Area and Porosity”, Academic Press, Vol. 2, London 1982. https://doi.org/10.1002/bbpc.19820861019
E. Puello-Polo, E. Marquez, J. L. Brito, “One-pot synthesis of Nb-modified Al2O3 support for NiMo hydrodesulfurization catalysts”, J. of sol-gel Sci. and Tech., Sep. 2018. https://doi.org/10.1007/s10971-
- 4792-x
V. Vega-Garita, M. Matamoros-Quesada, J. Vega-Baudrit, “Síntesis de CeO2: propiedades del sol-gel y caracterización de las nanopartículas obtenidas”, Tecnología en Marcha., Vol. 27, pp. 62-69, Sep. 2014. https://doi.org/10.18845/tm.v27i3.2067
E. Puello, Y. Díaz, J. L. Brito, “Effect of the structural modification by carbiding of alumina supported Anderson-type (NH4)4[NiMo6−xWxO24H6]·5H2O on hydrodesulfurization, hydrodechlorination and selective oxidation”, Catal. Communications., Vol. [29] pp. 89-93, Aug. 2017. https://doi.org/10.1016/j. catcom.2017.05.017
C. Thomazeau, C. Geantet, M. Lacroix, V. Harle, S. Benazeth, C. Marhic, M. Danot, “Two Cation Disulfide Layers in the WxMo(1−x)S2 Lamellar Solid Solution”, J. of Solid-State Chem., Vol. 160, pp. 147-155, Aug. 2001. 160. https://doi.org/10.1006/jssc.2001.9208
L. Zhang, Y. Li, H. Guo, H. Zhang, N. Zhang, T. Hayat, Y. Sun, “Decontamination of U(VI) on graphene oxide/Al2O3 composites investigated by XRD, FT-IR and XPS techniques”, Env. Pollution, Vol. 248, pp. 332-338, May. 2019. https://doi.org/10.1016/j.envpol.2019.01.126
R. Huirache-Acuña R, E. Rivera-Muñoz, B. Pawelec, M. Ostrooumov, R. Maya-Yescas, J. Ricoa, “The use of a natural Mexican zeolite as support of NiMoW sulphide hydrotreating catalysts”, Catal. Today, Vol. 220-222, pp. 301-309, Mar. 2014. https://doi.org/10.1016/j.cattod.2013.07.019
C. Wu, X. Chang, T. Chu, H. Chen, C. Wu, S. Lin, “Establishment of 2D Crystal Heterostructures by Sulfurization of Sequential Transition Metal Depositions: Preparation, Characterization, and Selective Growth”, Nano lett, Vol. 16, pp. 7093-7097, Nov. 2016. https://doi.org/10.1016/10.1021/acs. nanolett.6b03353
Julio-Julio, J. J., Puello-Polo, E., & Brito, J. (2016). Synthesis and characterization of alumina supported Ni-Mo (W) Anderson type heteropolyoxoanions: Thiophene hydrodesulfurization activity. Iteckne, 13(1), 36-43.
R. Cid, G. Pecchi, “Potentiometric method for determining the number and relative strength of acid sites in colored catalysts”, Appl. Catal., Vol. 14, pp. 15-21, 1895. https://doi.org/10.1016/S0166-9834(00)84340-7
M. Nguyen, G. Pirngruber, F. Albrieux, F. Chainet, M. Tayakout-Fayolle, C. Geantet, “Molecular-Level Insights into Coker/Straight-Run Gas Oil Hydrodenitrogenation by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry”, Energy Fuels, Vol. 33, pp. 1467-1472, Mar. 2019. https://doi.org/10.1021/acs.energyfuels.8b04432.
Y. Zhang et al., «Ultra-deep desulfurization via reactive adsorption on Ni/ZnO: The effect of ZnO particle size on the adsorption performance», Appl. Catal. B Environ., vol. 119-120, pp. 13-19, may 2012, doi: 10.1016/j.apcatb.2012.02.004.