Derechos de autor 2023 Investigación e Innovación en Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Desarrollo de un método analítico para la cuantificación del antibiótico florfenicol en un producto terminado farmacéutico veterinario por espectroscopía de infrarrojo cercano.
Corresponding Author(s) : Luz Figueroa Zambrano
Investigación e Innovación en Ingenierías,
Vol. 11 Núm. 1 (2023): Enero-Junio
Resumen
Objetivo. Diseñar un método para la cuantificación del Ingrediente Farmacéutico Activo (API) del antibiótico florfenicol, en un producto farmacéutico veterinario granulado por medio de la implementación de la técnica analítica de espectroscopía de infrarrojo cercano. Metodología. Se desarrolló un método para cuantificar el Ingrediente Farmacéutico Activo (API) en el producto terminado, por la técnica de Espectroscopia de Infrarrojo Cercano (NIR). Esta es una técnica analítica rápida, no destructiva y no requiere el uso de solventes. La metodología NIR implica obtener un método de predicción que incorpore la variabilidad de ingrediente API de florfenicol en el intervalo (16 g/100g (p/p) – 24 g/100g (p/p), en el producto terminado. Resultados. El método analítico se logró diseñar por medio de técnicas quimiométricas con transformaciones espectrales y una regresión multivariable de mínimos cuadrados parciales (PLS), con la cual se obtienen los criterios de coeficiente de correlación (R), el Error de calibración (SEC) y el Error de validación cruzada (SECV). Finalmente, se realiza una validación externa de la técnica analítica NIR para conocer la capacidad predictiva de cuantificar el API florfenicol en el producto terminado, determinando el Error estándar de predicción (SEP) evaluando parámetros de especificidad, linealidad, exactitud, precisión y robustez. Conclusiones. El método NIR diseñado permite la cuantificación del API florfenicol en el producto terminado en presentación granular para aplicación de control de calidad en una industria farmacéutica como una técnica alterna a la técnica tradicional de HPLC
Palabras clave
Descargar cita
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Yabré, L. Ferey, I. Somé, and K. Gaudin, “Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis,” Molecules, vol. 23, no. 5, p. 1065, May 2018, doi: 10.3390/molecules23051065.
- D. Biagi, P. Nencioni, M. Valleri, N. Calamassi, and P. Mura, “Development of a Near Infrared Spectroscopy method for the in-line quantitative bilastine drug determination during pharmaceutical powders blending,” J. Pharm. Biomed. Anal., vol. 204, p. 114277, Sep. 2021, doi: 10.1016/J.JPBA.2021.114277.
- Y. Liu, Y. Li, Y. Peng, S. Yan, X. Zhao, and D. Han, “Non-destructive and rapid detection of the internal chemical composition of granules samples by spectral transfer,” Chemom. Intell. Lab. Syst., vol. 208, p. 104174, Jan. 2021, doi: 10.1016/j.chemolab.2020.104174.
- A. Ashie, H. Lei, B. Han, M. Xiong, and H. Yan, “Fast determination of three components in milk thistle extract with a hand-held NIR spectrometer and chemometrics tools,” Infrared Phys. Technol., vol. 113, p. 103629, Mar. 2021, doi: 10.1016/j.infrared.2021.103629.
- X. Liu et al., “Determining the geographical origin and cultivation methods of Shanghai special rice using NIR and IRMS,” Food Chem., vol. 394, no. May, 2022, doi: 10.1016/j.foodchem.2022.133425.
- C. da S. Araújo, L. L. Macedo, W. C. Vimercati, A. Ferreira, L. C. Prezotti, and S. H. Saraiva, “Determination of pH and acidity in green coffee using near-infrared spectroscopy and multivariate regression,” J. Sci. Food Agric., vol. 100, no. 6, pp. 2488–2493, Apr. 2020, doi: 10.1002/jsfa.10270.
- P. Williams, Near infrared tecnology: Getting the best out of light. Nanaimo, Canadá: AFRICAN SUN MeDIA, 2019.
- L. Strani, “Process analytical technology approaches for dairy industry,” Feb. 2021, doi: 10.13130/STRANI-LORENZO_PHD2021-02-19.
- K. B. Beć, J. Grabska, and C. W. Huck, “Current and future research directions in computer-aided near-infrared spectroscopy: A perspective,” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 254. Elsevier B.V., p. 119625, Jun. 05, 2021, doi: 10.1016/j.saa.2021.119625.
- O. Y. Rodionova, A. V. Titova, N. A. Demkin, K. S. Balyklova, and A. L. Pomerantsev, “Qualitative and quantitative analysis of counterfeit fluconazole capsules: A non-invasive approach using NIR spectroscopy and chemometrics,” Talanta, vol. 195, pp. 662–667, Apr. 2019, doi: 10.1016/j.talanta.2018.11.088.
- B. Nagy, A. Farkas, K. Magyar, B. Démuth, Z. K. Nagy, and G. Marosi, “Spectroscopic characterization of tablet properties in a continuous powder blending and tableting process,” Eur. J. Pharm. Sci., vol. 123, pp. 10–19, Oct. 2018, doi: 10.1016/J.EJPS.2018.07.025.
- J. Zhao, G. Tian, Y. Qiu, and H. Qu, “Rapid quantification of active pharmaceutical ingredient for sugar-free Yangwei granules in commercial production using FT-NIR spectroscopy based on machine learning techniques,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 245, p. 118878, Jan. 2021, doi: 10.1016/j.saa.2020.118878.
- Y. H. Yun, H. D. Li, B. C. Deng, and D. S. Cao, “An overview of variable selection methods in multivariate analysis of near-infrared spectra,” TrAC Trends Anal. Chem., vol. 113, pp. 102–115, Apr. 2019, doi: 10.1016/J.TRAC.2019.01.018.
- J. Zhao, G. Tian, Y. Qiu, and H. Qu, “Rapid quantification of active pharmaceutical ingredient for sugar-free Yangwei granules in commercial production using FT-NIR spectroscopy based on machine learning techniques,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 245, p. 118878, 2021.
- United States Pharmacopeial Convention, 〈1039〉 Quimiometría. Rockville, MD, 2021.
- J. Carlos, H. Vega, B. De, J. Rahmer, and G. Herrera Vidal, “Principal component analysis applied to the statistical control of multivariate processes,” Investig. e Innovación en Ing., vol. 10, no. 1, pp. 17–29, Feb. 2022, doi: 10.17081/INVINNO.10.1.4972.
- Z. Zhang et al., “Chemometrics in instrumental analysis of complex systems—in honor and memory of Yi-Zeng Liang,” J. Chemom., vol. 32, no. 11, pp. 1–22, 2018, doi: 10.1002/cem.3095.
- A. B. Moroni, D. R. Vega, T. S. Kaufman, and N. L. Calvo, “Form quantitation in desmotropic mixtures of albendazole bulk drug by chemometrics-assisted analysis of vibrational spectra,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 265, p. 120354, Jan. 2022, doi: 10.1016/J.SAA.2021.120354.
- European Medicines Agency (EMEA), “Guidelines on the use of near infrared spectroscopy by the Pharmaceutical industry and the data requirements for new submissions and variations,” 2014.
- Food and Drug Administration (FDA), “Development and Submission of Near Infrared Analytical Procedures Guidance for Industry,” in Food and Drug Administration, 2021, [Online]. Available: http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm.
- United States Pharmacopeial Convention, <1856> Espectroscopia de infrarrojo cercano-Teoria y practica, USP43-NF38 ed. Rockville, MD, 2021
- M. Panzitta et al., “Spectrophotometry and pharmaceutical PAT/RTRT: Practical challenges and regulatory landscape from development to product lifecycle,” Int. J. Pharm., vol. 601, p. 120551, May 2021, doi: 10.1016/J.IJPHARM.2021.120551.
- L. Zhong et al., “Method development and validation of a near-infrared spectroscopic method for in-line API quantification during fluidized bed granulation,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 274, p. 121078, Jun. 2022, doi: 10.1016/J.SAA.2022.121078.
- P. Williams, P. Dardenne, and P. Flinn, “Tutorial: Items to be included in a report on a near infrared spectroscopy project:,” http://dx.doi.org.bd.univalle.edu.co/10.1177/0967033517702395, vol. 25, no. 2, pp. 85–90, Apr. 2017, doi: 10.1177/0967033517702395.
- Z. Xiaobo, Z. Jiewen, M. J. W. Povey, M. Holmes, and M. Hanpin, “Variables selection methods in near-infrared spectroscopy,” Anal. Chim. Acta, vol. 667, no. 1–2, pp. 14–32, 2010, doi: 10.1016/j.aca.2010.03.048.
- Metrohm, “NIRS Vision 4.1, Manual-Theory.” 2015.
- D. D. López Juvinao, L. M. . Torres Ustate, y F. O. Moya Camacho, "Tecnologías, procesos y problemática ambiental en la Minería de arcilla", Investigación e Innovación en Ingenierías, vol. 8, n.º 2, pp. 20–43, 2020. DOI: https://doi.org/10.17081/invinno.8.2.3857.
- H. G. Hernandez Palma, J. Solórzano Movilla, y J. Jinete Torres, "La Teoría de restricciones para los procesos de gestión y control en las IPS del Caribe Colombiano", Investigación e Innovación en Ingenierías, vol. 8, n.º 1, pp. 54–68, 2020. DOI: https://doi.org/10.17081/invinno.8.1.3624
- United States Pharmacopeial Convention, <1225> Validación De Procedimientos Farmacopeicos. 2020, pp. 1093–1098.
Referencias
M. Yabré, L. Ferey, I. Somé, and K. Gaudin, “Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis,” Molecules, vol. 23, no. 5, p. 1065, May 2018, doi: 10.3390/molecules23051065.
D. Biagi, P. Nencioni, M. Valleri, N. Calamassi, and P. Mura, “Development of a Near Infrared Spectroscopy method for the in-line quantitative bilastine drug determination during pharmaceutical powders blending,” J. Pharm. Biomed. Anal., vol. 204, p. 114277, Sep. 2021, doi: 10.1016/J.JPBA.2021.114277.
Y. Liu, Y. Li, Y. Peng, S. Yan, X. Zhao, and D. Han, “Non-destructive and rapid detection of the internal chemical composition of granules samples by spectral transfer,” Chemom. Intell. Lab. Syst., vol. 208, p. 104174, Jan. 2021, doi: 10.1016/j.chemolab.2020.104174.
A. Ashie, H. Lei, B. Han, M. Xiong, and H. Yan, “Fast determination of three components in milk thistle extract with a hand-held NIR spectrometer and chemometrics tools,” Infrared Phys. Technol., vol. 113, p. 103629, Mar. 2021, doi: 10.1016/j.infrared.2021.103629.
X. Liu et al., “Determining the geographical origin and cultivation methods of Shanghai special rice using NIR and IRMS,” Food Chem., vol. 394, no. May, 2022, doi: 10.1016/j.foodchem.2022.133425.
C. da S. Araújo, L. L. Macedo, W. C. Vimercati, A. Ferreira, L. C. Prezotti, and S. H. Saraiva, “Determination of pH and acidity in green coffee using near-infrared spectroscopy and multivariate regression,” J. Sci. Food Agric., vol. 100, no. 6, pp. 2488–2493, Apr. 2020, doi: 10.1002/jsfa.10270.
P. Williams, Near infrared tecnology: Getting the best out of light. Nanaimo, Canadá: AFRICAN SUN MeDIA, 2019.
L. Strani, “Process analytical technology approaches for dairy industry,” Feb. 2021, doi: 10.13130/STRANI-LORENZO_PHD2021-02-19.
K. B. Beć, J. Grabska, and C. W. Huck, “Current and future research directions in computer-aided near-infrared spectroscopy: A perspective,” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 254. Elsevier B.V., p. 119625, Jun. 05, 2021, doi: 10.1016/j.saa.2021.119625.
O. Y. Rodionova, A. V. Titova, N. A. Demkin, K. S. Balyklova, and A. L. Pomerantsev, “Qualitative and quantitative analysis of counterfeit fluconazole capsules: A non-invasive approach using NIR spectroscopy and chemometrics,” Talanta, vol. 195, pp. 662–667, Apr. 2019, doi: 10.1016/j.talanta.2018.11.088.
B. Nagy, A. Farkas, K. Magyar, B. Démuth, Z. K. Nagy, and G. Marosi, “Spectroscopic characterization of tablet properties in a continuous powder blending and tableting process,” Eur. J. Pharm. Sci., vol. 123, pp. 10–19, Oct. 2018, doi: 10.1016/J.EJPS.2018.07.025.
J. Zhao, G. Tian, Y. Qiu, and H. Qu, “Rapid quantification of active pharmaceutical ingredient for sugar-free Yangwei granules in commercial production using FT-NIR spectroscopy based on machine learning techniques,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 245, p. 118878, Jan. 2021, doi: 10.1016/j.saa.2020.118878.
Y. H. Yun, H. D. Li, B. C. Deng, and D. S. Cao, “An overview of variable selection methods in multivariate analysis of near-infrared spectra,” TrAC Trends Anal. Chem., vol. 113, pp. 102–115, Apr. 2019, doi: 10.1016/J.TRAC.2019.01.018.
J. Zhao, G. Tian, Y. Qiu, and H. Qu, “Rapid quantification of active pharmaceutical ingredient for sugar-free Yangwei granules in commercial production using FT-NIR spectroscopy based on machine learning techniques,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 245, p. 118878, 2021.
United States Pharmacopeial Convention, 〈1039〉 Quimiometría. Rockville, MD, 2021.
J. Carlos, H. Vega, B. De, J. Rahmer, and G. Herrera Vidal, “Principal component analysis applied to the statistical control of multivariate processes,” Investig. e Innovación en Ing., vol. 10, no. 1, pp. 17–29, Feb. 2022, doi: 10.17081/INVINNO.10.1.4972.
Z. Zhang et al., “Chemometrics in instrumental analysis of complex systems—in honor and memory of Yi-Zeng Liang,” J. Chemom., vol. 32, no. 11, pp. 1–22, 2018, doi: 10.1002/cem.3095.
A. B. Moroni, D. R. Vega, T. S. Kaufman, and N. L. Calvo, “Form quantitation in desmotropic mixtures of albendazole bulk drug by chemometrics-assisted analysis of vibrational spectra,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 265, p. 120354, Jan. 2022, doi: 10.1016/J.SAA.2021.120354.
European Medicines Agency (EMEA), “Guidelines on the use of near infrared spectroscopy by the Pharmaceutical industry and the data requirements for new submissions and variations,” 2014.
Food and Drug Administration (FDA), “Development and Submission of Near Infrared Analytical Procedures Guidance for Industry,” in Food and Drug Administration, 2021, [Online]. Available: http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm.
United States Pharmacopeial Convention, <1856> Espectroscopia de infrarrojo cercano-Teoria y practica, USP43-NF38 ed. Rockville, MD, 2021
M. Panzitta et al., “Spectrophotometry and pharmaceutical PAT/RTRT: Practical challenges and regulatory landscape from development to product lifecycle,” Int. J. Pharm., vol. 601, p. 120551, May 2021, doi: 10.1016/J.IJPHARM.2021.120551.
L. Zhong et al., “Method development and validation of a near-infrared spectroscopic method for in-line API quantification during fluidized bed granulation,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 274, p. 121078, Jun. 2022, doi: 10.1016/J.SAA.2022.121078.
P. Williams, P. Dardenne, and P. Flinn, “Tutorial: Items to be included in a report on a near infrared spectroscopy project:,” http://dx.doi.org.bd.univalle.edu.co/10.1177/0967033517702395, vol. 25, no. 2, pp. 85–90, Apr. 2017, doi: 10.1177/0967033517702395.
Z. Xiaobo, Z. Jiewen, M. J. W. Povey, M. Holmes, and M. Hanpin, “Variables selection methods in near-infrared spectroscopy,” Anal. Chim. Acta, vol. 667, no. 1–2, pp. 14–32, 2010, doi: 10.1016/j.aca.2010.03.048.
Metrohm, “NIRS Vision 4.1, Manual-Theory.” 2015.
D. D. López Juvinao, L. M. . Torres Ustate, y F. O. Moya Camacho, "Tecnologías, procesos y problemática ambiental en la Minería de arcilla", Investigación e Innovación en Ingenierías, vol. 8, n.º 2, pp. 20–43, 2020. DOI: https://doi.org/10.17081/invinno.8.2.3857.
H. G. Hernandez Palma, J. Solórzano Movilla, y J. Jinete Torres, "La Teoría de restricciones para los procesos de gestión y control en las IPS del Caribe Colombiano", Investigación e Innovación en Ingenierías, vol. 8, n.º 1, pp. 54–68, 2020. DOI: https://doi.org/10.17081/invinno.8.1.3624
United States Pharmacopeial Convention, <1225> Validación De Procedimientos Farmacopeicos. 2020, pp. 1093–1098.