Cambios de las propiedades fisicoquímicas de una emulsión enriquecida con carotenoides de epicarpio de chontaduro: Influencia del ultrasonido
Derechos de autor 2024 Investigación e Innovación en Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
- Articles
- Submited: January 13, 2024
-
Publicado: September 20, 2024
Resumen
Objetivo: El objetivo de la presente investigación fue evaluar el efecto del ultrasonido en las propiedades fisicoquímicas y concentración de carotenoides de una emulsión elaborada con extracto lipídico de epicarpio de chontaduro. Metodología: El extracto lipídico de epicarpio de chontaduro se utilizó para obtener una emulsión enriquecida de carotenoides y se evaluaron las variables de respuesta pH, color superficial, conductividad eléctrica, potencial z, tamaño de partícula, y concentración de carotenoides, después de los tratamientos de ultrasonido. Resultados: El ultrasonido aumentó significativamente la concentración de los carotenoides (β-caroteno, α-caroteno, β-criptoxantina, zeaxantina, y licopeno) en la emulsión. El pH, la conductividad eléctrica, el potencial zeta, y el tamaño de partícula, disminuyeron significativamente, mientras que los parámetros de color L* y C aumentaron significativamente. Conclusiones: El proceso de ultrasonido aumenta la concentración de los carotenoides, y mejora la percepción de color en la emulsión evaluada.
Citas
- J. Martínez-Girón and L. E. and Ordóñez-Santos, “Determinación de la concentración de pigmentos carotenoides en harina de residuos de chontaduro (Bactris gasipaes),” Prod. Limpia, vol. 11, no. 1, pp. 85–93, 2016. doi:10.22507/pml.v11n1a8
- K. A. N. Matos, D. Praia Lima, A. P. Pereira Barbosa, A. Zerlotti Mercadante, and R. Campos Chisté, “Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources,” Food Chem., vol. 272, pp. 216–221, 2019. doi:10.1016/j.foodchem.2018.08.053
- R. C. Chisté, E. L. N. Costa, S. F. Monteiro, and A. Z. Mercadante, “Carotenoid and phenolic compound profiles of cooked pulps of orange and yellow peach palm fruits (Bactris gasipaes) from the Brazilian Amazonia,” J. Food Compost. Anal., vol. 99, no. 103873, p. 103873, 2021. doi:10.1016/j.jfca.2021.103873
- L. M. de Souza Mesquita, B. V. Neves, L. P. Pisani, and V. V. de Rosso, “Mayonnaise as a model food for improving the bioaccessibility of carotenoids from Bactris gasipaes fruits,” Lebenson. Wiss. Technol., vol. 122, no. 109022, p. 109022, 2020. doi.org/10.1016/j.lwt.2020.109022
- S. Fang, X. Zhao, Y. Liu, X. Liang, and Y. Yang, “Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of β-carotene,” Food Hydrocoll., vol. 93, pp. 102–110, 2019. doi:10.1016/j.foodhyd.2019.02.024
- S. Roohinejad, I. Oey, J. Wen, S. J. Lee, D. W. Everett, and D. J. Burritt, “Formulation of oil-in-water β-carotene microemulsions: effect of oil type and fatty acid chain length,” Food Chem., vol. 174, pp. 270–278, 2015. doi:10.1016/j.foodchem.2014.11.056
- Y. Li and D. Xiang, “Stability of oil-in-water emulsions performed by ultrasound power or high-pressure homogenization,” PLoS One, vol. 14, no. 3, p. e0213189, 2019. doi:10.1371/journal.pone.0213189
- D. J. McClements, “Critical review of techniques and methodologies for characterization of emulsion stability,” Crit. Rev. Food Sci. Nutr., vol. 47, no. 7, pp. 611–649, 2007. doi:10.1080/10408390701289292
- T. Leong, S. Manickam, G. J. O. Martin, W. Li, and M. Ashokkumar, Ultrasonic production of nano-emulsions for bioactive delivery in drug and food applications, 1st ed. Cham, Switzerland: Springer International Publishing, 2018.
- S. de J. Calva-Estrada, O. García, M. R. Mendoza, and M. Jiménez, “Characterization of O/W emulsions of carotenes in blackberry juice performed by ultrasound and high-pressure homogenization,” J. Dispers. Sci. Technol., vol. 39, no. 2, pp. 181–189, 2018. doi:10.1080/01932691.2017.1306783
- B. Niu, P. Shao, and P. Sun, “Ultrasound-assisted emulsion electrosprayed particles for the stabilization of β-carotene and its nutritional supplement potential,” Food Hydrocoll., vol. 102, no. 105634, p. 105634, 2020. doi:10.1016/j.foodhyd.2019.105634
- S. Belgheisi, A. Motamedzadegan, J. M. Milani, L. Rashidi, and A. Rafe, “Impact of ultrasound processing parameters on physical characteristics of lycopene emulsion,” J. Food Sci. Technol., vol. 58, no. 2, pp. 484–493, 2021. doi:10.1007/s13197-020-04557-5
- Z. Lian et al., “pH-Shifting combined with ultrasound treatment of emulsion-filled β-conglycinin gels as β-carotene carriers: Effect of emulsion concentration on gel properties,” Ultrason. Sonochem., vol. 95, p. 106412, 2023. doi:10.1016/j.ultsonch.2023.106412
- J. Martínez-Girón, C. Osorio, and L. E. Ordoñez-Santos, “Effect of temperature and particle size on physicochemical and techno-functional properties of peach palm peel flour (Bactris gasipaes, red and yellow ecotypes),” Food Sci. Technol. Int., vol. 28, no. 6, pp. 535–544, 2022. doi:10.1177/10820132211025133
- L. E. Ordóñez-Santos, L. X. Pinzón-Zarate, and L. O. González-Salcedo, “Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology,” Ultrason. Sonochem., vol. 27, pp. 560–566, 2015. doi:10.1016/j.ultsonch.2015.04.010
- V. D. Prá et al., “Formulation and Characterization of Ultrasound-Assisted Nanoemulsions Containing Palm Oil (Elaeis guineensis Jacq) IN WATER,” Braz. J. Chem. Eng., vol. 36, no. 2, pp. 941–947, 2019. doi:10.1590/0104-6632.20190362s20180291
- L. E. Ordóñez-Santos, J. Martínez-Girón, and M. E. Arias-Jaramillo, “Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice,” Food Chem., vol. 233, pp. 96–100, 2017. doi:10.1016/j.foodchem.2017.04.114
- D. Fu et al., “Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility,” Food Hydrocoll., vol. 89, pp. 80–89, 2019. doi:10.1016/j.foodhyd.2018.10.032
- R. Mozafarpour and A. Koocheki, “Fabrication of emulsion gels based on sonicated grass pea (Lathyrus sativus L.) protein as a delivery system for β-carotene: Kinetic modeling and release behavior,” Lebenson. Wiss. Technol., vol. 184, no. 115020, p. 115020, 2023. doi:10.1016/j.lwt.2023.115020
- K. Barman, D. Chowdhury, and P. K. Baruah, “Development of β‐carotene loaded nanoemulsion using the industrial waste of orange (Citrus reticulate) peel to improve in vitro bioaccessibility of carotenoids and use as natural food colorant,” J. Food Process. Preserv., vol. 44, no. 5, p. e14429, 2020. doi:10.1111/jfpp.14429
- Y. Tao and D.-W. Sun, “Enhancement of food processes by ultrasound: a review,” Crit. Rev. Food Sci. Nutr., vol. 55, no. 4, pp. 570–594, 2015. doi:10.1080/10408398.2012.667849
- N. Bock, M. A. Woodruff, D. W. Hutmacher, and T. R. Dargaville, “Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications,” Polymers (Basel), vol. 3, no. 1, pp. 131–149, 2011. doi:10.3390/polym3010131
- D. F. Ramírez Jiménez, "Sistema de medición y control de temperatura para un prototipo de planta de tratamiento de aguas residuales", Investigación e Innovación en Ingenierías, vol. 9, n.º 1, pp. 100–113, abr. 2021. DOI: https://doi.org/10.17081/invinno.9.1.4305
- N. A. Riquelme Hinojosa and C. A. Arancibia Aguilar, “Obtención de nanoemulsiones utilizando saponinas de quillay como sustituto de un surfactante sintético,” Mundo Nano Rev. Interdiscip. Nanociencia Nanotecnología, vol. 12, no. 23, p. 1, 2019. doi:10.22201/ceiich.24485691e.2019.23.67654