Análisis de la viabilidad y aplicación de un coagulante combinado a base de semillas de moringa oleífera en el tratamiento de aguas

Share:

Resumen

Objetivo: Hacer un análisis de viabilidad técnica de un biocoagulante derivado de semillas de Moringa oleífera, como una alternativa para reducir el consumo de sales inorgánicas, aprovechando el efecto combinado de coagulantes inorgánicos y biocoagulantes. Metodología: Para llevar a cabo este estudio, se empleó un diseño factorial 4x2 en el cual se disolvió el biocoagulante combinado en diferentes concentraciones de cloruro de sodio (0.25M, 0.5M y, 0.75M) con el objetivo de determinar la eficiencia en la eliminación de turbiedad, color y potencial Z en distintos niveles de combinación de biocoagulante y sulfato de aluminio. Resultados: Los resultados señalaron que el polvo de Moringa (MO), al interactuar con otros compuestos mediante adsorción, puentes y complejos, facilita la coagulación, promoviendo la formación de flocs. Además, se observó que al diluir el polvo en solución salina de 0.75 M se obtiene un biocoagulante que conserva parte de los componentes activos, pese a la degradación parcial de algunas proteínas. En contraste, con una concentración de sal de 0.5 M y una combinación de sulfato de aluminio y Moringa oleífera de 50/50, se lograron remociones de hasta un 98% de turbiedad y color. Conclusión: Se evidenció el alto potencial del coagulante combinado para reducir la turbiedad y el color en el agua con un menor requerimiento de sales inorgánicas. Sin embargo, se observó una limitación en la vida útil del biocoagulante, lo que sugiere la necesidad de investigar métodos para prolongar su conservación.

Citas

  1. B. A. Parra-Orobio et al., “Assessment of the Water Footprint in Low-Income Urban Neighborhoods from Developing Countries: Case Study Fátima (Gamarra, Colombia)”, Sustainability, vol. 15, no 9, p. 7115, abr. 2023, doi: 10.3390/su15097115.
  2. D. Nayeri y S. A. Mousavi, “A comprehensive review on the coagulant recovery and reuse from drinking water treatment sludge”, Journal of Environmental Management, vol. 319, p. 115649, oct. 2022, doi: 10.1016/j.jenvman.2022.115649.
  3. N. Muisa, Z. Hoko, y P. Chifamba, “Impacts of alum residues from Morton Jaffray Water Works on water quality and fish, Harare, Zimbabwe”, Physics and Chemistry of the Earth, Parts A/B/C, vol. 36, no 14–15, pp. 853–864, 2011, doi: 10.1016/j.pce.2011.07.047.
  4. S. C. Bondy y A. Campbell, “Aluminum and Neurodegenerative Diseases”, 2017, pp. 131–156. doi: 10.1016/bs.ant.2017.07.008.
  5. S. C. Gad, “Aluminum”, en Encyclopedia of Toxicology, Elsevier, 2014, pp. 161–163. doi: 10.1016/B978-0-12-386454-3.00810-1.
  6. R. Rajendran, M. Abirami, P. Prabhavathi, P. Premasudha, B. Kanimozhi, y A. Manikandan, “Biological treatment of drinking water by chitosan based nanocomposites”, African Journal of Biotechnology, vol. 14, no 11, pp. 930–936, 2015, doi: 10.5897/AJB2015.14469.
  7. J. R. Balbinoti et al., “Plant-based coagulants for food industry wastewater treatment”, Journal of Water Process Engineering, vol. 52, p. 103525, abr. 2023, doi: 10.1016/j.jwpe.2023.103525.
  8. W. L. Ang, A. W. Mohammad, A. Benamor, y N. Hilal, “Chitosan as natural coagulant in hybrid coagulation-nanofiltration membrane process for water treatment”, Journal of Environmental Chemical Engineering, vol. 4, no 4, pp. 4857–4862, dic. 2016, doi: 10.1016/j.jece.2016.03.029.
  9. E. Lichtfouse et al., “Chitosan for direct bioflocculation of wastewater”, Environmental Chemistry Letters, vol. 17, no 4. pp. 1603–1621, 1 de diciembre de 2019. doi: 10.1007/s10311-019-00900-1.
  10. S. B. Kurniawan et al., “Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery”, International Journal of Environmental Research and Public Health, vol. 17, no 24. pp. 1–33, 12 de diciembre de 2020. doi: 10.3390/ijerph17249312.
  11. B. I. Gandiwa, L. B. Moyo, S. Ncube, T. A. Mamvura, L. L. Mguni, y N. Hlabangana, “Optimisation of using a blend of plant based natural and synthetic coagulants for water treatment: (Moringa Oleifera-Cactus Opuntia-alum blend)”, South African Journal of Chemical Engineering, vol. 34, pp. 158–164, oct. 2020, doi: 10.1016/j.sajce.2020.07.005.
  12. B. Koul, N. Bhat, M. Abubakar, M. Mishra, A. P. Arukha, y D. Yadav, “Application of Natural Coagulants in Water Treatment: A Sustainable Alternative to Chemicals”, Water, vol. 14, no 22, p. 3751, nov. 2022, doi: 10.3390/w14223751.
  13. Y. T. Hameed, A. Idris, S. A. Hussain, y N. Abdullah, “A tannin-based agent for coagulation and flocculation of municipal wastewater: Chemical composition, performance assessment compared to Polyaluminum chloride, and application in a pilot plant”, Journal of Environmental Management, vol. 184, pp. 494–503, dic. 2016, doi: 10.1016/j.jenvman.2016.10.033.
  14. M. Besharati Fard, D. Hamidi, J. Alavi, R. Jamshidian, A. Pendashteh, y S. A. Mirbagheri, “Saline oily wastewater treatment using Lallemantia mucilage as a natural coagulant: Kinetic study, process optimization, and modeling”, Industrial Crops and Products, vol. 163, p. 113326, may 2021, doi: 10.1016/j.indcrop.2021.113326.
  15. O. Bouaouine, I. Bourven, F. Khalil, P. Bressollier, y M. Baudu, “Identification and role of Opuntia ficus indica constituents in the flocculation mechanism of colloidal solutions”, Separation and Purification Technology, vol. 209, pp. 892–899, ene. 2019, doi: 10.1016/j.seppur.2018.09.036.
  16. T. K. F. S. Freitas et al., “Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant”, Industrial Crops and Products, vol. 76, pp. 538–544, dic. 2015, doi: 10.1016/j.indcrop.2015.06.027.
  17. H. Altaher, T. E. Khalil, y R. Abubeah, “An Agricultural waste as a novel coagulant aid to treat high turbid water containing humic acids”, Global Nest Journal, vol. 18, no 2, pp. 279–290, jun. 2016, doi: 10.30955/GNJ.001559.
  18. A. Ahmad et al., “Dosage-based application versus ratio-based approach for metal- and plant-based coagulants in wastewater treatment: Merits, limitations, and applicability”, Journal of Cleaner Production, vol. 334, p. 130245, feb. 2022, doi: 10.1016/j.jclepro.2021.130245.
  19. I. T. Tomasi, C. A. Machado, R. A. R. Boaventura, C. M. S. Botelho, y S. C. R. Santos, “Tannin-based coagulants: Current development and prospects on synthesis and uses”, Science of The Total Environment, vol. 822, p. 153454, may 2022, doi: 10.1016/j.scitotenv.2022.153454.
  20. S. Gautam y G. Saini, “Use of natural coagulants for industrial wastewater treatment”, vol. 6, no 4, pp. 553–578, 2021, doi: 10.22034/gjesm.2020.04.10.
  21. M. Saleem y R. T. Bachmann, “A contemporary review on plant-based coagulants for applications in water treatment”, Journal of Industrial and Engineering Chemistry, vol. 72, pp. 281–297, 2019, doi: 10.1016/j.jiec.2018.12.029.
  22. B. U. Okoro, S. Sharifi, M. A. Jesson, y J. Bridgeman, “Natural organic matter ( NOM ) and turbidity removal by plant-based coagulants : A review”, Journal of Environmental Chemical Engineering, vol. 9, no 6, p. 106588, 2021, doi: 10.1016/j.jece.2021.106588.
  23. V. Saritha, M. K. Karnena, y B. K. Dwarapureddi, “‘Exploring natural coagulants as impending alternatives towards sustainable water clarification’ – A comparative studies of natural coagulants with alum”, Journal of Water Process Engineering, vol. 32, p. 100982, dic. 2019, doi: 10.1016/j.jwpe.2019.100982.
  24. S. Y. Choy, K. M. N. Prasad, T. Y. Wu, y R. N. Ramanan, “A review on common vegetables and legumes as promising plant-based natural coagulants in water clarification”, International Journal of Environmental Science and Technology, vol. 12, no 1, pp. 367–390, ene. 2015, doi: 10.1007/s13762-013-0446-2.
  25. K. A. Ghebremichael, K. R. Gunaratna, H. Henriksson, H. Brumer, y G. Dalhammar, “A simple purification and activity assay of the coagulant protein from Moringa oleifera seed”, Water Research, vol. 39, no 11, pp. 2338–2344, jun. 2005, doi: 10.1016/j.watres.2005.04.012.
  26. S. B. Kurniawan, M. F. Imron, S. R. S. Abdullah, A. R. Othman, I. F. Purwanti, y H. A. Hasan, “Treatment of real aquaculture effluent using bacteria-based bioflocculant produced by Serratia marcescens”, Journal of Water Process Engineering, vol. 47, p. 102708, jun. 2022, doi: 10.1016/j.jwpe.2022.102708.
  27. H. A. Aziz y N. I. M. Sobri, “Extraction and application of starch-based coagulants from sago trunk for semi-aerobic landfill leachate treatment”, Environmental Science and Pollution Research, vol. 22, no 21, pp. 16943–16950, nov. 2015, doi: 10.1007/s11356-015-4895-7.
  28. K. Zheng, L. Wu, Z. He, B. Yang, y Y. Yang, “Measurement of the total protein in serum by biuret method with uncertainty evaluation”, Measurement, vol. 112, pp. 16–21, dic. 2017, doi: 10.1016/j.measurement.2017.08.013.
  29. N. M. Ofgea, A. M. Tura, y G. M. Fanta, “Activated carbon from H3PO4 -activated Moringa Stenopetale Seed Husk for removal of methylene blue: Optimization using the response surface method (RSM)”, Environmental and Sustainability Indicators, vol. 16, p. 100214, 2022, doi: https://doi.org/10.1016/j.indic.2022.100214.
  30. V. Lago-Abascal, M. Duarte-Ginorio, M. Martínez-Azcarraga, E. Almora-Hernández, N. Figueredo-Moreno, y E. Rodríguez-Jiménez, “Caracterización y uso de la cáscara de semillas de Moringa Oleífera como salvado en la fortificación de Mini Panqués”, Centro Azúcar, vol. 49, no 2, pp. 100–111, abr. 2022.
  31. R. W. Saa, E. N. Fombang, E. B. Ndjantou, y N. Y. Njintang, “Treatments and uses of Moringa oleifera seeds in human nutrition: A review”, Food Science and Nutrition, vol. 7, no 6, pp. 1911–1919, jun. 2019, doi: 10.1002/FSN3.1057.
  32. S. Niju, M. Balajii, y C. Anushya, “A comprehensive review on biodiesel production using Moringa oleifera oil”, International Journal of Green Energy, vol. 16, no 9, pp. 702–715, jul. 2019, doi: 10.1080/15435075.2019.1619565.
  33. A. T. A. Baptista, M. O. Silva, R. G. Gomes, R. Bergamasco, M. F. Vieira, y A. M. S. Vieira, “Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment”, Separation and Purification Technology, vol. 180, pp. 114–124, 2017, doi: https://doi.org/10.1016/j.seppur.2017.02.040.
  34. Y. Yue et al., “Design and coagulation mechanism of a new functional composite coagulant in removing humic acid”, Separation and Purification Technology, vol. 292, p. 121016, 2022, doi: https://doi.org/10.1016/j.seppur.2022.121016.
  35. M. Kumar et al., “Moringa oleifera Lam. seed proteins: Extraction, preparation of protein hydrolysates, bioactivities, functional food properties, and industrial application”, Food Hydrocolloids, vol. 131, p. 107791, oct. 2022, doi: 10.1016/j.foodhyd.2022.107791.
  36. L. Caycedo Lozano, L. C. C. Ramírez, D. M. T. Suárez, L. Caycedo Lozano, L. C. C. Ramírez, y D. M. T. Suárez, “Las bacterias, su nutrición y crecimiento: una mirada desde la química”, Nova, vol. 19, no 36, pp. 49–94, sep. 2021, doi: 10.22490/24629448.5293.
  37. E. Lester-Card, G. Smith, G. Lloyd, y C. Tizaoui, “A green approach for the treatment of oily steelworks wastewater using natural coagulant of Moringa oleifera seed”, Bioresource Technology Reports, vol. 22, p. 101393, jun. 2023, doi: 10.1016/j.biteb.2023.101393.
Cómo citar
[1]
D. F. Erazo, A. K. Niño Vargas, y D. A. Nunez Vallejos, «Análisis de la viabilidad y aplicación de un coagulante combinado a base de semillas de moringa oleífera en el tratamiento de aguas », Investigación e Innovación en Ingenierías, vol. 12, n.º 2, sep. 2024.

Send mail to Author


Send Cancel

Custom technologies based on your needs

  • MongoDB
  • ElasticSearch
  • Redis
  • Solr
  • Memcached