Análisis Comparativo de las Propiedades de Crudos Convencionales y No Convencionales y su Impacto en el Procesamiento y Refinación
Derechos de autor 2024 Investigación e Innovación en Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
- Articles
- Submited: May 10, 2024
-
Publicado: November 28, 2024
Resumen
Objetivo: Este trabajo tiene como objetivo realizar un analisis comparativo de las propiedades de los crudos y sus cortes, tanto de origen convencional y no convencional, y establecer las principales diferencias que podrían tener influencia en cada una de las etapas que inician desde la extracción del yacimiento hasta su refinación, incluyendo el craqueo catalítico. Metodología: Las alimentaciones se obtuvieron a escala de laboratorio mediante una adaptación de la norma ASTM D2892-18 y su posterior caracterización empleando diversas técnicas analíticas. Una vez obtenidas y caracterizadas las alimentaciones fueron evaluadas catalíticamente en un reactor de lecho fijo tipo MAT. Resultados: Los hidrocarburos provenientes de yacimientos no convencionales presentaron una elevada concentración de n-parafinas que durante las etapas de destilación favorecieron la formación de hidrocarburos más livianos y disminuyeron la cantidad de residuos. Durante la evaluación catalítica estas alimentaciones no convencionales mostraron una elevada selectividad a gases y menor selectividad a combustibles líquidos, sumado a una menor calidad del corte gasolina. Conclusión: El exceso de parafinas presentes en los hidrocarburos extraídos por fracking se convierte en un aspecto negativo que podría ocasionar considerables pérdidas económicas en la industria petrolera. La elevada producción de gases y baja selectividad a combustibles líquidos y coque afectaría la operatividad normal del proceso teniendo en cuenta que fueron diseñadas para la producción de combustibles líquidos.
Citas
- Iqbal M, Yakubu M, Aminu Z, Raj P. 8 - Crude to chemicals: The conventional FCC unit still relevant. Modelling of Chemical Process Systems (2023) 251-267. https://doi.org/10.1016/B978-0-12-823869-1.00003-X.
- Sadeghbeigi R. Fluid Catalytic Cracking Handbook. 4th ed. Kidlington: Butterworth-Heinemann; 2020.
- Peters KE, Xia X, Pomerantz AE, Mullins OC. Geochemistry Applied to Evaluation of Unconventional Resources. In: Zee Ma Y, Holditch S, editors. Unconventional oil and gas resources handbook: evaluation and development. Amsterdam: Gulf Professional Publishing; 2016. p. 71–126. https://doi.org/10.1016/B978-0-12-802238-2.00003-1.
- Caineng Z, Rukai Z, Shizhen T, Lianhua H, Yuan X, Zhang G, et al. Unconventional Petroleum Geology. 2nd ed. Amsterdam: Elsevier; 2017.
- Hadi A. Chapter 3 - Geology of tight unconventional oil reservoirs. Tight Oil Reservoirs
- (2023) 25-33. https://doi.org/10.1016/B978-0-12-820269-2.00006-8.
- Cheng-Zao J, Xiong-Qi P, Yan S. Whole petroleum system and ordered distribution pattern of conventional and unconventional oil and gas reservoirs. Petroleum Science (2023) 20 1-19. https://doi.org/10.1016/j.petsci.2022.12.012.
- T. Hu, G.Y. Wu, Z. Xu, X.Q. Pang, Y. Liu, S. Yu. Potential resources of conventional, tight, and shale oil and gas from Paleogene Wenchang Formation source rocks in the Huizhou Depression. Adv. Geo-Energy Res., 6 (5) (2022), pp. 402-414, https://doi.org/10.46690/ager.2022.05.05.
- García J, Fals J, Dietta L, Sedran U. VGO from shale oil. FCC processability and co-processing with conventional VGO. Fuel 328 (2022) 125327, https://doi.org/10.1016/j.fuel.2022.125327.
- Chen X, Li N, Yang Y, Yang C, Shan H. Novel Propylene Production Route: Utilizing Hydrotreated Shale Oil as Feedstock via Two-Stage Riser Catalytic Cracking. Energy Fuels 2015;29:7190–5. https://doi.org/10.1021/acs.energyfuels.5b02076.
- Xu Ch, Gao J, Zhao S, Lin S. Correlation between feedstock SARA components
- and FCC product yields. Fuel 2005;84:669–74. https://doi.org/10.1016/j.fuel.2004.08.009.
- Palos, R.; Gutierrez, A.; Fernandez, M. L.; Trueba, D.; Bilbao, J.; Arandes, J. M. Upgrading of heavy coker naphtha by means of catalytic cracking in refinery FCC unit. Fuel Process. Technol. 2020, 205, 106454. https://doi.org/10.1016/j.fuproc.2020.106454.
- Jimenez-García, G.; de Lasa, H.; Maya-Yescas, R. Simultaneous estimation of kinetics and catalysts activity during cracking of 1,3,5-tri-isopropyl benzene on FCC catalyst. Catal. Today 2014, 220-222, 178, https://doi.org/10.1016/j.cattod.2013.10.026.
- García-Martínez J, Johnson M, Valla J, Li K, Ying JY. Mesostructured zeolite Y - High hydrothermal stability and superior FCC catalytic performance. Catal Sci Technol 2012;2:987–94. https://doi.org/10.1039/c2cy00309k.
- ASTM. Standard Test Method for Testing Fluid Catalytic Cracking (FCC) Catalysts by Microactivity Test. ASTM international 2008: D3907-03.
- ASTM. Standard Test Method for Distillation of Crude Petroleum (15-Theoretical Plate Column). ASTM international 2018: D2892-18.
- ASTM. Standard Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method). ASTM international 2019: D287-12b.
- ASTM. Standard Test Method for Determination of Carbon Residue (Micro Method). ASTM international 2015: D4530-15.
- ASTM. Standard Test Method for Distillation of Petroleum Products at Reduced Pressure. ASTM international 2018: D1160-18.
- ASTM. Standard Test Method for Characteristic Groups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption Chromatographic Method. ASTM international 2011: D2007-11.
- Fals J, García JR, Falco M, Sedran U. Coke from SARA fractions in VGO. Impact on Y zeolite acidity and physical properties. Fuel 2018;225:26–34. https://doi.org/10.1016/j.fuel.2018.02.180.
- Fals J, Carlos A.T. Toloza, Puello-Polo E, Márquez E, Méndez F. A comprehensive study of product distributions and coke deposition during catalytic cracking of vacuum gas oil over hierarchical zeolites. Heliyon Volume 9, Issue 4, April 2023, e15408. https://doi.org/10.1016/j.heliyon.2023.e15408.
- Misra S, Baruan S, Singh K. Paraffin problems in crude oil production and transportation: A Review. SPE Production and Facilities. 1995; 10(1):50-4, https://doi.org/10.2118/28181-PA.
- Mandal, S; Bhattacharyya, D; Shende, V.B; Das, A.K; Ghosh, S; en M.L. Occelli (Ed.), Fluid Catalytic Cracking III, ACS Symp. Ser. 571, ACS, Washington DC, 1994, p. 335.
- J.R. García, M. Falco, U. Sedran, Intracrystalline mesoporosity over Y zeolites: Processing of VGO and resid-VGO mixtures in FCC, Catal Today 296 (2017) 247-253, https://doi.org/10.1016/j.cattod.2017.04.010.
- Bozzano G; Dente, M; Carlucci, F. The effect of naphthenic components in the visbreaking modelingComput. Chem. Eng. 29 (2005) 1439. https://doi.org/10.1016/j.compchemeng.2005.02.033.
- Stratiev, D; Shishkova, I; Tsaneva, T; Mitkova, M; Yordanov, D. Investigation of relations between properties of vacuum residual oils from different origin, and of their deasphalted and asphaltene fractions. Fuel 170 (2016) 115-129. https://doi.org/10.1016/j.fuel.2015.12.038.
- Lappas, A; Nalbandian, L; Iatridis, D; Voutetakis, S; Vasalos, L. Effect of metals poisoning on FCC products yields: studies in an FCC short contact time pilot plant unit. Catal. Today 65 (2001) 233-240, https://doi.org/10.1016/S0920-5861(00)00588-5.
- Wen, Z; Yang, J; Xu, X; Gao, J. Removal of Nickel and Vanadium from Crude Oil by Microwave-Chemical Method. I. Chemical Method. Pet. Sci. Technol 31 (2013) 991-999, https://doi.org/10.1080/10916460903330023.
- Yuxia, Z.; Quansheng, D.; Wei, L.; Liwen, T.; Jun, L. Studies of iron effects on FCC catalysts. Fluid Catalytic Cracking VII Materials, Methods and Process Innovations; Elsevier, 2007; Vol. 166, pp 201− 775 212, https://doi.org/10.1016/S0167-2991(07)80196-0.
- Liu, Z; Zhang, Z; Liu, P; Zhai, J; Yang, C. Iron Contamination Mechanism and Reaction Performance Research on FCC Catalyst. J Nanotechnol 2015 (2015) 500, https://doi.org/10.1155/2015/273859.
- Petti, T.; Tomczak, Z.; Pereira, C.; Cheng, W. Investigation of nickel species on commercial FCC equilibrium catalysts-implications on catalyst performance and laboratory evaluation. Appl. Catal., A 772 1998, 169, 95−109, https://doi.org/10.1016/S0926-860X(97)00373-6.
- V. Pinto, A.S. Escobar, B.G. de Oliveira, Y.L. Lam, H.S. Cerqueira, B. Louis, J.P. Tessonnier, D.S. Su, M.M. Pereira. The effect of alumina on FCC catalyst in the presence of nickel and vanadium. Applied Catalysis A: General (2010) vol 388 p 15-21. https://doi.org/10.1016/j.apcata.2010.07.055.
- Torrealba, M; Goldwasser, M.R; Perot, G; Guisnet, M. Influence of vanadium on the physicochemical and catalytic properties of USHY zeolite and FCC catalyst. Appl. Catal. A: Gen. 90 (1992) 35-49. https://doi.org/10.1016/0926-860X(92)80246-9.
- Buurmans, C; Ruiz-Martínez, J; Knowles, W.V; van der, B; Bergwerff, J.A; Weckhuysen, B.M. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining. Nat. Chem 3 (2011) 862-867, https://doi.org/10.1038/nchem.1148.
- Passamonti, F. J.; Puente, G. d. l.; Sedran, U. Comparison between MAT flow fixed bed and batch fluidized bed reactors in the evaluation of FCC catalysts. Conversion and yields of the main hydrocarbon groups. Energy Fuels 2009, 23, 1358−1363, https://doi.org/10.1021/ef900151e.
- Stratiev, D.; Shishkova, I.; Tsaneva, T.; Mitkova, M.; Yordanov, D. Investigation of relations between properties of vacuum residual oils from different origin, and of their deasphalted and asphaltene fractions. Fuel 2016, 170, 115−129, https://doi.org/10.1016/j.fuel.2015.12.038.
- Al-Khattaf S, Saeed MR, Aitani A, Klein MT. Catalytic Cracking of Light Crude Oil to Light Olefins and Naphtha over E-Cat and MFI: Microactivity Test versus Advanced Cracking Evaluation and the Effect of High Reaction Temperature. Energy Fuels 2018;32:6189–99, https://doi.org/10.1021/acs. energyfuels.8b00691.
- D. F. Ramírez Jiménez, "Sistema de medición y control de temperatura para un prototipo de planta de tratamiento de aguas residuales", Investigación e Innovación en Ingenierías, vol. 9, n.º 1, pp. 100–113, abr. 2021. DOI: https://doi.org/10.17081/invinno.9.1.4305
- Speight JG. The Chemistry and Technology of Petroleum. 5th ed. Boca Raton: CRC Press; 2014.