Derechos de autor 2025 Investigación e Innovación en Ingenierías

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Influencia del aditivo poli (glicerol – ácido cítrico) en la reología del concreto de baja viscosidad
Corresponding Author(s) : Natalia Carolina Uribe Contreras
Investigación e Innovación en Ingenierías,
Vol. 13 Núm. 1 (2025): Enero - junio
Resumen
Introducción: Este documento presenta los resultados experimentales de la investigación del aditivo químico poli (glicerol – ácido cítrico) del cual se desconocía su efecto en el concreto como material de construcción. Objetivo: Identificar la clasificación e influencia del aditivo poli (glicerol-ácido cítrico) en la reología del concreto de baja viscosidad mediante el estudio del comportamiento reológico. Metodología: Ajuste de los datos obtenidos mediante un reómetro ICAR PLUS a través de un diseño estadístico – experimental del tipo 22 con las variables: relación agua – cemento (0.450, 0.475 y 0.500) y concentración de aditivo químico (0.65%, 0.80% y 0.95%, conforme el peso de cemento). Resultados: Desde reometría a un nivel de significancia estadística (P-value = 0.01) se demostró que la adición del aditivo poli (glicerol – ácido cítrico) disminuye el esfuerzo de fluencia, no afecta la viscosidad plástica y aumenta la trabajabilidad. En la resistencia a la compresión, la presencia de este aditivo químico no genera una variación estadísticamente significativa al 95% de confidencia en las edades de 7, 14 y 28 días. Conclusiones: El aditivo poli (glicerol – ácido cítrico) actúa fundamentalmente como plastificante, aunque también con efectos retardantes, y no ocasiona afectaciones frente a la resistencia a la compresión.
Palabras clave
Descargar cita
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. G. Londono Velasquez, «Manual Para El Control De Calidad En Concreto Reforzado», pp. 5-6, 1997, [En línea]. Disponible en: http://www.bdigital.unal.edu.co/48971/1/luisgermanlondoñovelásquez.1997.pdf
- [2] O. H. Wallevik y J. E. Wallevik, «Rheology as a tool in concrete science: The use of rheographs and workability boxes», Cem Concr Res, vol. 41, n.o 12, pp. 1279-1288, dic. 2011, doi: 10.1016/j.cemconres.2011.01.009.
- [3] A. Celestine Ezeagu y E. Ebuka Edwin, «Influence of Super plasticizer on the Compressive Strength and Setting Time of Concrete», American Journal of Engineering and Technology Management, vol. 6, n.o 5, p. 82, 2021, doi: 10.11648/j.ajetm.20210605.12.
- [4] K. Devi, P. Aggarwal, y B. Saini, «Admixtures Used in Self-Compacting Concrete: A Review», Iranian Journal of Science and Technology - Transactions of Civil Engineering, vol. 44, n.o 2. pp. 377-403, 2020. doi: 10.1007/s40996-019-00244-4.
- [5] S. Ahmad, «Evaluation of effect of superplasticizer on performance of self-compacting concrete», J Test Eval, vol. 41, n.o 5, sep. 2013, doi: 10.1520/JTE20120208.
- [6] D.-H. Kwon, H.-S. Lee, J.-Y. Jeon, W.-T. Jeong, H.-K. Jo, y H.-R. Kim, «Evaluation of Pumping Characteristics of High Strength Concrete using Continuous Pumping System», Journal of the Korea Institute of Building Construction, vol. 11, n.o 4, pp. 387-395, ago. 2011, doi: 10.5345/jkibc.2011.11.4.387.
- [7] P. F. G. Banfill, «Additivity effects in the rheology of fresh concrete containing water-reducing admixtures», Constr Build Mater, vol. 25, n.o 6, pp. 2955-2960, 2011, doi: 10.1016/j.conbuildmat.2010.12.001.
- [8] D. Feys, R. Verhoeven, y G. De Schutter, «Fresh self compacting concrete, a shear thickening material», Cem Concr Res, vol. 38, n.o 7, pp. 920-929, 2008, doi: 10.1016/j.cemconres.2008.02.008.
- [9] S. Gwon, S. H. Han, T. D. Vu, C. Kim, y M. Shin, «Rheological and Mechanical Properties of Kenaf and Jute Fiber-Reinforced Cement Composites», Int J Concr Struct Mater, vol. 17, n.o 1, pp. 1-16, 2023, doi: 10.1186/s40069-022-00565-1.
- [10] R. A. Bispo, G. O. Vicente, G. P. da Silva Júnior, D. U. Benjamim, y M. A. de Morais Alcântara, «Investigation of rheological behavior of self-compacting and high performance composite concretes», Materials Research, vol. 24, 2021, doi: 10.1590/1980-5373-MR-2021-0264.
- [11] J. A. Sainz-Aja et al., «Determination of the optimum amount of superplasticizer additive for self-compacting concrete», Applied Sciences (Switzerland), vol. 10, n.o 9, 2020, doi: 10.3390/app10093096.
- [12] S. Alsadey, «Effects of Super Plasticizing and Retarding Admixtures on Properties of Concrete», 2013, doi: 10.15242/IIE.E1213607.
- [13] M. Ilg y J. Plank, «Synthesis and Properties of a Polycarboxylate Superplasticizer with a Jellyfish-Like Structure Comprising Hyperbranched Polyglycerols», Ind Eng Chem Res, vol. 58, n.o 29, pp. 12913-12926, 2019, doi: 10.1021/acs.iecr.9b02077.
- [14] K. Yamada, T. Takahashi, S. Hanehara, y M. Matsuhisa, «Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer», Cem Concr Res, vol. 30, n.o 2, pp. 197-207, 2000, doi: 10.1016/S0008-8846(99)00230-6.
- [15] J. Plank y B. Sachsenhauser, «Experimental determination of the effective anionic charge density of polycarboxylate superplasticizers in cement pore solution», Cem Concr Res, vol. 39, n.o 1, pp. 1-5, 2009, doi: 10.1016/j.cemconres.2008.09.001.
- [16] S. Alsadey, «Effects of Super Plasticizing and Retarding Admixtures on Properties of Concrete», 2013, doi: 10.15242/IIE.E1213607.
- [17] M. K. Saeed, M. K. Rahman, M. Alfawzan, S. Basha, y H. A. Dahish, «Evaluation of date kernel powder (DKP) for potential use as setting and hydration retarder in concrete», Journal of Building Engineering, vol. 57, oct. 2022, doi: 10.1016/j.jobe.2022.104855.
- [18] W. C. Wang, H. T. H. Duong, y C. H. Zhang, «Influence of accelerating admixtures on high early strength cement performance using heat curing method», Case Studies in Construction Materials, jul. 2023, doi: 10.1016/j.cscm.2022.e01746.
- [19] D. Marchon, S. Kawashima, H. Bessaies-Bey, S. Mantellato, y S. Ng, «Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry», Cement and Concrete Research, vol. 112. Elsevier Ltd, pp. 96-110, 1 de octubre de 2018. doi: 10.1016/j.cemconres.2018.05.014.
- [20] T. W. Kong, H. M. Yang, H. S. Lee, y C. B. Yoon, «Evaluations of all-in-one, polycarboxylate-based superplasticizer with viscosity modifying agents for the application of normal-strength, high-fluidity concrete», Applied Sciences (Switzerland), vol. 11, n.o 23, dic. 2021, doi: 10.3390/app112311141.
- [21] V. K. Bui, D. Montgomery, I. Hinczak, y K. Turner, «Rapid testing method for segregation resistance of self-compacting concrete», Cem Concr Res, vol. 32, n.o 9, pp. 1489-1496, 2002, doi: 10.1016/S0008-8846(02)00811-6.
- [22] J. Mardulier, F., «Bleeding of Cement: Its Significance in Concrete», en Cement Comparison of Standards and Significance of Particular Tests, ASTM, 1968. doi: 10.1520/STP48353S.
- [23] R. Maderuelo-Solera et al., «Tailoring basic and acidic properties of MgAl hydrotalcite by fluoride anions: Effect on glycerol oligomerisation», Catal Today, vol. 421, n.o February, 2023, doi: 10.1016/j.cattod.2023.114197.
- [24] N. Ebadipour, S. Paul, B. Katryniok, y F. Dumeignil, «Alkaline-based catalysts for glycerol polymerization reaction: A review», Catalysts, vol. 10, n.o 9, pp. 1-22, 2020, doi: 10.3390/catal10091021.
- [25] Real Academia Española, «polimerización». [En línea]. Disponible en: https://dle.rae.es/polimerización
- [26] E. Álvarez-Castillo, I. Santana, J. Gómez, C. Bengoechea, y A. Guerrero, «Effect of citric acid on porcine plasma protein bioplastics processed through injection moulding», React Funct Polym, vol. 192, p. 105709, nov. 2023, doi: 10.1016/J.REACTFUNCTPOLYM.2023.105709.
- [27] H. Zahlan, W. S. Saeed, R. Alrasheed, N. M. Alandes, y T. Aouak, «Synthesis of poly (citric acid-co-glycerol) and its application as an inhibitor of CaCO3 deposition», Materials, vol. 12, n.o 22, 2019, doi: 10.3390/ma12223800.
- [28] M. Chandra Kumari y V. Jaisankar, «Synthesis and Characterisation of Poly (Glycerol-co-Citrate)/ n-HAp Composite for Biomedical Applications», Mater Today Proc, vol. 5, n.o 2, pp. 8824-8831, 2018, doi: 10.1016/j.matpr.2017.12.313.
- [29] Germann Instruments A/S, «Rheology using the ICAR Plus – An Introduction Overview». doi: 10.14440/jbm.2014.20.
- [30] H. Gutiérrez Pulido y H. de la V. Salazar, Análisis y diseño de experimentos, McGraw-Hil. 2008. doi: 10.3906/sag-1507-147.
- [31] Minitab®, «¿Qué es ANOVA?» [En línea]. Disponible en: https://support.minitab.com/es-mx/minitab/21/help-and-how-to/statistical-modeling/anova/supporting-topics/basics/what-is-anova/
- [32] ASTM International, «Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate», 2017, doi: 10.1520/C0029_C0029M-17a.
- [33] ASTM International, «Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate», 2016, doi: 10.1520/C0127-15.
- [34] ASTM International, «Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates», 2020, doi: 10.1520/C0136_C0136M-19.
- [35] ASTM International, «Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate», 2023, doi: 10.1520/C0128-22.
- [36] ASTM International, «Standard Specification for Concrete Aggregates», 2018, doi: 10.1520/C0033_C0033M-18.
- [37] ASTM International, «Standard Specification for Portland Cement», doi: 10.1520/C0150-07.
- [38] H. Xie et al., «Workability and proportion design of pumping concrete based on rheological parameters», Constr Build Mater, vol. 44, pp. 267-275, 2013, doi: 10.1016/j.conbuildmat.2013.02.051.
- [39] ASTM International, «Standard Test Method for Slump Flow of Self-Consolidating Concrete», 2021, doi: 10.1520/C1611_C1611M-21.
- [40] R. S. Ahari, T. K. Erdem, y K. Ramyar, «Thixotropy and structural breakdown properties of self consolidating concrete containing various supplementary cementitious materials», Cem Concr Compos, vol. 59, pp. 26-37, 2015, doi: 10.1016/j.cemconcomp.2015.03.009.
- [41] ASTM International, «Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens», 2021, doi: 10.1520/C0039_C0039M-21.
- [42] ASTM International, «Standard Specification for Molds for Forming Concrete Test Cylinders Vertically», 2016, doi: 10.1520/C0470_C0470M-15.
- [43] M. Molina Arias, «El significado de los intervalos de confianza», Pediatría Atención Primaria, vol. 15, n.o 57, pp. 91-94, mar. 2013, doi: 10.4321/S1139-76322013000100016.
- [44] Minitab®, «Minitab®». [En línea]. Disponible en: https://www.minitab.com/es-mx/
- [45] Minitab®, «Tabla Análisis de varianza para Analizar diseño de superficie de respuesta». [En línea]. Disponible en: https://support.minitab.com/es-mx/minitab/21/help-and-how-to/statistical-modeling/doe/how-to/response-surface/analyze-response-surface-design/interpret-the-results/all-statistics-and-graphs/analysis-of-variance-table/
- [46] Minitab®, «Métodos y fórmulas para el análisis de varianza en ANOVA de un solo factor». [En línea]. Disponible en: https://support.minitab.com/es-mx/minitab/20/help-and-how-to/statistical-modeling/anova/how-to/one-way-anova/methods-and-formulas/analysis-of-variance/
- [47] Minitab® Blog Editor, «Comprensión del Análisis de Varianza (ANOVA) y la Prueba F». [En línea]. Disponible en: https://blog.minitab.com/es/comprension-del-analisis-de-varianza-anova-y-la-prueba-f#:~:text=La prueba F llevan el,con respecto a la media
- [48] L. E. Zapata-Ordúz, G. Portela, y O. M. Suárez, «Weibull statistical analysis of splitting tensile strength of concretes containing class F fly ash, micro/nano-SiO2», Ceram Int, vol. 40, n.o 5, pp. 7373-7388, 2014, doi: 10.1016/j.ceramint.2013.12.083.
- [49] EPG, «ERMCO The European Guidelines for Self-Compacting Concrete», The European Guidelines for Self Compacting Concrete, n.o May, 2005.
- [50] R. B. Singh y B. Singh, «Rheological behaviour of different grades of self-compacting concrete containing recycled aggregates», Constr Build Mater, vol. 161, pp. 354-364, feb. 2018, doi: 10.1016/j.conbuildmat.2017.11.118.
- [51] Minitab®, «Diagrama de Pareto de efectos estandarizados», Soporte de Minitab® 21. Accedido: 4 de junio de 2023. [En línea]. Disponible en: https://support.minitab.com/es-mx/minitab/21/help-and-how-to/statistical-modeling/regression/how-to/fit-regression-model/interpret-the-results/all-statistics-and-graphs/pareto-chart/
- [52] D. F. Ramírez Jiménez, "Sistema de medición y control de temperatura para un prototipo de planta de tratamiento de aguas residuales", Investigación e Innovación en Ingenierías, vol. 9, n.º 1, pp. 100–113, abr. 2021. DOI: https://doi.org/10.17081/invinno.9.1.4305
- [53] Minitab®, «Interpretar los resultados clave para Gráfica de superficie», Soporte de Minitab® 20. Accedido: 4 de junio de 2023. [En línea]. Disponible en: https://support.minitab.com/es-mx/minitab/20/help-and-how-to/statistical-modeling/doe/how-to/response-surface/analyze-response-surface-design/interpret-the-results/key-results
Referencias
L. G. Londono Velasquez, «Manual Para El Control De Calidad En Concreto Reforzado», pp. 5-6, 1997, [En línea]. Disponible en: http://www.bdigital.unal.edu.co/48971/1/luisgermanlondoñovelásquez.1997.pdf
[2] O. H. Wallevik y J. E. Wallevik, «Rheology as a tool in concrete science: The use of rheographs and workability boxes», Cem Concr Res, vol. 41, n.o 12, pp. 1279-1288, dic. 2011, doi: 10.1016/j.cemconres.2011.01.009.
[3] A. Celestine Ezeagu y E. Ebuka Edwin, «Influence of Super plasticizer on the Compressive Strength and Setting Time of Concrete», American Journal of Engineering and Technology Management, vol. 6, n.o 5, p. 82, 2021, doi: 10.11648/j.ajetm.20210605.12.
[4] K. Devi, P. Aggarwal, y B. Saini, «Admixtures Used in Self-Compacting Concrete: A Review», Iranian Journal of Science and Technology - Transactions of Civil Engineering, vol. 44, n.o 2. pp. 377-403, 2020. doi: 10.1007/s40996-019-00244-4.
[5] S. Ahmad, «Evaluation of effect of superplasticizer on performance of self-compacting concrete», J Test Eval, vol. 41, n.o 5, sep. 2013, doi: 10.1520/JTE20120208.
[6] D.-H. Kwon, H.-S. Lee, J.-Y. Jeon, W.-T. Jeong, H.-K. Jo, y H.-R. Kim, «Evaluation of Pumping Characteristics of High Strength Concrete using Continuous Pumping System», Journal of the Korea Institute of Building Construction, vol. 11, n.o 4, pp. 387-395, ago. 2011, doi: 10.5345/jkibc.2011.11.4.387.
[7] P. F. G. Banfill, «Additivity effects in the rheology of fresh concrete containing water-reducing admixtures», Constr Build Mater, vol. 25, n.o 6, pp. 2955-2960, 2011, doi: 10.1016/j.conbuildmat.2010.12.001.
[8] D. Feys, R. Verhoeven, y G. De Schutter, «Fresh self compacting concrete, a shear thickening material», Cem Concr Res, vol. 38, n.o 7, pp. 920-929, 2008, doi: 10.1016/j.cemconres.2008.02.008.
[9] S. Gwon, S. H. Han, T. D. Vu, C. Kim, y M. Shin, «Rheological and Mechanical Properties of Kenaf and Jute Fiber-Reinforced Cement Composites», Int J Concr Struct Mater, vol. 17, n.o 1, pp. 1-16, 2023, doi: 10.1186/s40069-022-00565-1.
[10] R. A. Bispo, G. O. Vicente, G. P. da Silva Júnior, D. U. Benjamim, y M. A. de Morais Alcântara, «Investigation of rheological behavior of self-compacting and high performance composite concretes», Materials Research, vol. 24, 2021, doi: 10.1590/1980-5373-MR-2021-0264.
[11] J. A. Sainz-Aja et al., «Determination of the optimum amount of superplasticizer additive for self-compacting concrete», Applied Sciences (Switzerland), vol. 10, n.o 9, 2020, doi: 10.3390/app10093096.
[12] S. Alsadey, «Effects of Super Plasticizing and Retarding Admixtures on Properties of Concrete», 2013, doi: 10.15242/IIE.E1213607.
[13] M. Ilg y J. Plank, «Synthesis and Properties of a Polycarboxylate Superplasticizer with a Jellyfish-Like Structure Comprising Hyperbranched Polyglycerols», Ind Eng Chem Res, vol. 58, n.o 29, pp. 12913-12926, 2019, doi: 10.1021/acs.iecr.9b02077.
[14] K. Yamada, T. Takahashi, S. Hanehara, y M. Matsuhisa, «Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer», Cem Concr Res, vol. 30, n.o 2, pp. 197-207, 2000, doi: 10.1016/S0008-8846(99)00230-6.
[15] J. Plank y B. Sachsenhauser, «Experimental determination of the effective anionic charge density of polycarboxylate superplasticizers in cement pore solution», Cem Concr Res, vol. 39, n.o 1, pp. 1-5, 2009, doi: 10.1016/j.cemconres.2008.09.001.
[16] S. Alsadey, «Effects of Super Plasticizing and Retarding Admixtures on Properties of Concrete», 2013, doi: 10.15242/IIE.E1213607.
[17] M. K. Saeed, M. K. Rahman, M. Alfawzan, S. Basha, y H. A. Dahish, «Evaluation of date kernel powder (DKP) for potential use as setting and hydration retarder in concrete», Journal of Building Engineering, vol. 57, oct. 2022, doi: 10.1016/j.jobe.2022.104855.
[18] W. C. Wang, H. T. H. Duong, y C. H. Zhang, «Influence of accelerating admixtures on high early strength cement performance using heat curing method», Case Studies in Construction Materials, jul. 2023, doi: 10.1016/j.cscm.2022.e01746.
[19] D. Marchon, S. Kawashima, H. Bessaies-Bey, S. Mantellato, y S. Ng, «Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry», Cement and Concrete Research, vol. 112. Elsevier Ltd, pp. 96-110, 1 de octubre de 2018. doi: 10.1016/j.cemconres.2018.05.014.
[20] T. W. Kong, H. M. Yang, H. S. Lee, y C. B. Yoon, «Evaluations of all-in-one, polycarboxylate-based superplasticizer with viscosity modifying agents for the application of normal-strength, high-fluidity concrete», Applied Sciences (Switzerland), vol. 11, n.o 23, dic. 2021, doi: 10.3390/app112311141.
[21] V. K. Bui, D. Montgomery, I. Hinczak, y K. Turner, «Rapid testing method for segregation resistance of self-compacting concrete», Cem Concr Res, vol. 32, n.o 9, pp. 1489-1496, 2002, doi: 10.1016/S0008-8846(02)00811-6.
[22] J. Mardulier, F., «Bleeding of Cement: Its Significance in Concrete», en Cement Comparison of Standards and Significance of Particular Tests, ASTM, 1968. doi: 10.1520/STP48353S.
[23] R. Maderuelo-Solera et al., «Tailoring basic and acidic properties of MgAl hydrotalcite by fluoride anions: Effect on glycerol oligomerisation», Catal Today, vol. 421, n.o February, 2023, doi: 10.1016/j.cattod.2023.114197.
[24] N. Ebadipour, S. Paul, B. Katryniok, y F. Dumeignil, «Alkaline-based catalysts for glycerol polymerization reaction: A review», Catalysts, vol. 10, n.o 9, pp. 1-22, 2020, doi: 10.3390/catal10091021.
[25] Real Academia Española, «polimerización». [En línea]. Disponible en: https://dle.rae.es/polimerización
[26] E. Álvarez-Castillo, I. Santana, J. Gómez, C. Bengoechea, y A. Guerrero, «Effect of citric acid on porcine plasma protein bioplastics processed through injection moulding», React Funct Polym, vol. 192, p. 105709, nov. 2023, doi: 10.1016/J.REACTFUNCTPOLYM.2023.105709.
[27] H. Zahlan, W. S. Saeed, R. Alrasheed, N. M. Alandes, y T. Aouak, «Synthesis of poly (citric acid-co-glycerol) and its application as an inhibitor of CaCO3 deposition», Materials, vol. 12, n.o 22, 2019, doi: 10.3390/ma12223800.
[28] M. Chandra Kumari y V. Jaisankar, «Synthesis and Characterisation of Poly (Glycerol-co-Citrate)/ n-HAp Composite for Biomedical Applications», Mater Today Proc, vol. 5, n.o 2, pp. 8824-8831, 2018, doi: 10.1016/j.matpr.2017.12.313.
[29] Germann Instruments A/S, «Rheology using the ICAR Plus – An Introduction Overview». doi: 10.14440/jbm.2014.20.
[30] H. Gutiérrez Pulido y H. de la V. Salazar, Análisis y diseño de experimentos, McGraw-Hil. 2008. doi: 10.3906/sag-1507-147.
[31] Minitab®, «¿Qué es ANOVA?» [En línea]. Disponible en: https://support.minitab.com/es-mx/minitab/21/help-and-how-to/statistical-modeling/anova/supporting-topics/basics/what-is-anova/
[32] ASTM International, «Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate», 2017, doi: 10.1520/C0029_C0029M-17a.
[33] ASTM International, «Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate», 2016, doi: 10.1520/C0127-15.
[34] ASTM International, «Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates», 2020, doi: 10.1520/C0136_C0136M-19.
[35] ASTM International, «Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate», 2023, doi: 10.1520/C0128-22.
[36] ASTM International, «Standard Specification for Concrete Aggregates», 2018, doi: 10.1520/C0033_C0033M-18.
[37] ASTM International, «Standard Specification for Portland Cement», doi: 10.1520/C0150-07.
[38] H. Xie et al., «Workability and proportion design of pumping concrete based on rheological parameters», Constr Build Mater, vol. 44, pp. 267-275, 2013, doi: 10.1016/j.conbuildmat.2013.02.051.
[39] ASTM International, «Standard Test Method for Slump Flow of Self-Consolidating Concrete», 2021, doi: 10.1520/C1611_C1611M-21.
[40] R. S. Ahari, T. K. Erdem, y K. Ramyar, «Thixotropy and structural breakdown properties of self consolidating concrete containing various supplementary cementitious materials», Cem Concr Compos, vol. 59, pp. 26-37, 2015, doi: 10.1016/j.cemconcomp.2015.03.009.
[41] ASTM International, «Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens», 2021, doi: 10.1520/C0039_C0039M-21.
[42] ASTM International, «Standard Specification for Molds for Forming Concrete Test Cylinders Vertically», 2016, doi: 10.1520/C0470_C0470M-15.
[43] M. Molina Arias, «El significado de los intervalos de confianza», Pediatría Atención Primaria, vol. 15, n.o 57, pp. 91-94, mar. 2013, doi: 10.4321/S1139-76322013000100016.
[44] Minitab®, «Minitab®». [En línea]. Disponible en: https://www.minitab.com/es-mx/
[45] Minitab®, «Tabla Análisis de varianza para Analizar diseño de superficie de respuesta». [En línea]. Disponible en: https://support.minitab.com/es-mx/minitab/21/help-and-how-to/statistical-modeling/doe/how-to/response-surface/analyze-response-surface-design/interpret-the-results/all-statistics-and-graphs/analysis-of-variance-table/
[46] Minitab®, «Métodos y fórmulas para el análisis de varianza en ANOVA de un solo factor». [En línea]. Disponible en: https://support.minitab.com/es-mx/minitab/20/help-and-how-to/statistical-modeling/anova/how-to/one-way-anova/methods-and-formulas/analysis-of-variance/
[47] Minitab® Blog Editor, «Comprensión del Análisis de Varianza (ANOVA) y la Prueba F». [En línea]. Disponible en: https://blog.minitab.com/es/comprension-del-analisis-de-varianza-anova-y-la-prueba-f#:~:text=La prueba F llevan el,con respecto a la media
[48] L. E. Zapata-Ordúz, G. Portela, y O. M. Suárez, «Weibull statistical analysis of splitting tensile strength of concretes containing class F fly ash, micro/nano-SiO2», Ceram Int, vol. 40, n.o 5, pp. 7373-7388, 2014, doi: 10.1016/j.ceramint.2013.12.083.
[49] EPG, «ERMCO The European Guidelines for Self-Compacting Concrete», The European Guidelines for Self Compacting Concrete, n.o May, 2005.
[50] R. B. Singh y B. Singh, «Rheological behaviour of different grades of self-compacting concrete containing recycled aggregates», Constr Build Mater, vol. 161, pp. 354-364, feb. 2018, doi: 10.1016/j.conbuildmat.2017.11.118.
[51] Minitab®, «Diagrama de Pareto de efectos estandarizados», Soporte de Minitab® 21. Accedido: 4 de junio de 2023. [En línea]. Disponible en: https://support.minitab.com/es-mx/minitab/21/help-and-how-to/statistical-modeling/regression/how-to/fit-regression-model/interpret-the-results/all-statistics-and-graphs/pareto-chart/
[52] D. F. Ramírez Jiménez, "Sistema de medición y control de temperatura para un prototipo de planta de tratamiento de aguas residuales", Investigación e Innovación en Ingenierías, vol. 9, n.º 1, pp. 100–113, abr. 2021. DOI: https://doi.org/10.17081/invinno.9.1.4305
[53] Minitab®, «Interpretar los resultados clave para Gráfica de superficie», Soporte de Minitab® 20. Accedido: 4 de junio de 2023. [En línea]. Disponible en: https://support.minitab.com/es-mx/minitab/20/help-and-how-to/statistical-modeling/doe/how-to/response-surface/analyze-response-surface-design/interpret-the-results/key-results