Derechos de autor 2025 Investigación e Innovación en Ingenierías

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Evaluación comparativa de técnicas de aprendizaje automático para la clasificación de huecos de tensión inducidos por fallas
Corresponding Author(s) : Joaquín Caicedo Navarro
Investigación e Innovación en Ingenierías,
Vol. 13 Núm. 1 (2025): Enero - junio
Resumen
Objetivo: Comparar diversas técnicas de inteligencia artificial para clasificar huecos de tensión inducidos por fallas utilizando criterios cuantitativos y cualitativos, junto con el proceso analítico jerárquico. Metodología: Se generaron señales sintéticas de huecos de tensión mediante simulaciones en MATLAB/Simulink. La ingeniería de características incluyó transformaciones como el modelo de fasor espacial, la transformada de Fourier discreta y la de tiempo corto. Estas transformaciones permitieron extraer características temporales, espectrales y estadísticas, generando diez conjuntos diferentes. Las características principales fueron seleccionadas mediante algoritmos para optimizar la clasificación. Se utilizaron árboles de decisión, máquinas de vectores de soporte y redes neuronales artificiales, evaluando su rendimiento en función del tiempo de cálculo, requisitos de almacenamiento, precisión e interpretabilidad. El proceso analítico jerárquico se aplicó para evaluar la idoneidad general de cada enfoque. Resultados: Los árboles de decisión demostraron ser rápidos, precisos y altamente interpretables, lo que los hace ideales para aplicaciones en tiempo real. Las máquinas de vectores de soporte también lograron buena precisión, pero requirieron más recursos y presentaron una interpretabilidad moderada. Las redes neuronales artificiales ofrecieron un rendimiento equilibrado con una interpretabilidad limitada. Conclusiones: Entre los algoritmos evaluados, los árboles de decisión son los más adecuados para la clasificación en tiempo real de huecos de tensión. Sin embargo, la elección de la técnica debe alinearse con las necesidades específicas de la aplicación. Investigaciones futuras deberían considerar criterios adicionales y centrarse en mejorar la interpretabilidad mediante técnicas de inteligencia artificial explicable.
Palabras clave
Descargar cita
Endnote/Zotero/Mendeley (RIS)BibTeX
- [1] J. E. Caicedo, D. Agudelo-Martínez, E. Rivas-Trujillo, and J. Meyer, “A systematic review of real-time detection and classification of power quality disturbances,” Prot. Control Mod. Power Syst., vol. 8, no. 1, p. 3, 2023, doi: 10.1186/s41601-023-00277-y.
- [2] “Power Quality Measurements Methods, Testing and Measurement Techniques,” IEC Std. 61000-4-30, 2019.
- [3] M. H. J. Bollen, “What is power quality?,” Electr. Power Syst. Res., vol. 66, no. 1, pp. 5–14, 2003, doi: 10.1016/S0378-7796(03)00067-1.
- [4] G. S. Chawda et al., “Comprehensive Review on Detection and Classification of Power Quality Disturbances in Utility Grid with Renewable Energy Penetration,” IEEE Access, vol. 8, pp. 146807–146830, 2020, doi: 10.1109/ACCESS.2020.3014732.
- [5] M. Veizaga, C. Delpha, D. Diallo, S. Bercu, and L. Bertin, “Classification of voltage sags causes in industrial power networks using multivariate time-series,” IET Gener. Transm. Distrib., 2023, doi: 10.1049/gtd2.12765.
- [6] É. M. Motoki, J. M. de C. Filho, P. M. da Silveira, N. B. Pereira, and P. V. G. de Souza, “Cost of Industrial Process Shutdowns Due to Voltage Sag and Short Interruption,” Energies, vol. 14, no. 10, p. 2874, May 2021, doi: 10.3390/en14102874.
- [7] “IEEE Recommended Practice for Monitoring Electric Power Quality,” 2019. doi: 10.1109/IEEESTD.2019.8796486.
- [8] J. E. Caicedo, E. Rivas, and J. Meyer, “Comparison of transformations and feature extraction techniques to characterize fault-induced voltage sags,” Simp. Int. sobre la Calid. la Energía Eléctrica - SICEL, vol. 11, Jan. 2024, doi: 10.15446/sicel.v11.110048.
- [9] M. R. Alam, K. M. Muttaqi, and T. K. Saha, “Classification and Localization of Fault-Initiated Voltage Sags Using 3-D Polarization Ellipse Parameters,” IEEE Trans. Power Deliv., vol. 35, no. 4, pp. 1812–1822, 2020, doi: 10.1109/TPWRD.2019.2954857.
- [10] L. F. A. Rodrigues, H. L. M. Monteiro, D. D. Ferreira, B. H. G. Barbosa, C. A. R. Junior, and C. A. Duque, “Sample-by-sample Power Quality Disturbance classification based on Sliding Window Recursive Discrete Fourier Transform,” Electr. Power Syst. Res., vol. 235, p. 110607, Oct. 2024, doi: 10.1016/j.epsr.2024.110607.
- [11] I. S. Samanta et al., “A Comprehensive Review of Deep-Learning Applications to Power Quality Analysis,” Energies, vol. 16, no. 11, p. 4406, May 2023, doi: 10.3390/en16114406.
- [12] R. Igual and C. Medrano, “Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review,” Renew. Sustain. Energy Rev., vol. 132, p. 110050, Oct. 2020, doi: 10.1016/j.rser.2020.110050.
- [13] E. Perez-Anaya, A. Y. Jaen-Cuellar, D. A. Elvira-Ortiz, R. de J. Romero-Troncoso, and J. J. Saucedo-Dorantes, “Methodology for the Detection and Classification of Power Quality Disturbances Using CWT and CNN,” Energies, vol. 17, no. 4, p. 852, Feb. 2024, doi: 10.3390/en17040852.
- [14] J. Li, Y. Yang, H. Lin, Z. Teng, F. Zhang, and Y. Xu, “A voltage sag detection method based on modified s transform with digital prolate spheroidal window,” IEEE Trans. Power Deliv., vol. 36, no. 2, pp. 997–1006, 2021, doi: 10.1109/TPWRD.2020.2999693.
- [15] A. Bagheri, I. Y. H. Gu, M. H. J. Bollen, and E. Balouji, “A Robust Transform-Domain Deep Convolutional Network for Voltage Dip Classification,” IEEE Trans. Power Deliv., vol. 33, no. 6, pp. 2794–2802, 2018, doi: 10.1109/TPWRD.2018.2854677.
- [16] L. Ramalingappa and A. Manjunatha, “Power quality event classification using complex wavelets phasor models and customized convolution neural network,” Int. J. Electr. Comput. Eng., vol. 12, no. 1, p. 22, Feb. 2022, doi: 10.11591/ijece.v12i1.pp22-31.
- [17] Y. Pu, H. Yang, X. Ma, and X. Sun, “Recognition of voltage sag sources based on phase space reconstruction and improved VGG transfer learning,” Entropy, vol. 21, no. 10, 2019, doi: 10.3390/e21100999.
- [18] Ç. Kocaman and M. Özdemir, “Determining five kinds of power quality disturbances by using statistical methods and wavelet energy coefficients,” Renew. Energy Power Qual. J., vol. 1, no. 15, pp. 745–750, 2017, doi: 10.24084/repqj15.455.
- [19] A. D. Gonzalez-Abreu, M. Delgado-Prieto, J. J. Saucedo-Dorantes, and R. A. Osornio-Rios, “Novelty detection on power quality disturbances monitoring,” Renew. Energy Power Qual. J., vol. 19, pp. 211–216, 2021, doi: 10.24084/repqj19.259.
- [20] W. L. Rodrigues Junior, F. A. S. Borges, R. de A. L. Rabelo, J. J. P. C. Rodrigues, R. A. S. Fernandes, and I. N. Silva, “A methodology for detection and classification of power quality disturbances using a real‐time operating system in the context of home energy management systems,” Int. J. Energy Res., vol. 45, no. 1, pp. 203–219, Jan. 2021, doi: 10.1002/er.5183.
- [21] J. Xiu, X. Guangye, M. Xiangping, and D. Guilin, “Voltage sag detection method based on dq transform and complex wavelet transform,” in 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology, ICEEMT 2021, 2021, pp. 429–434. doi: 10.1109/ICEEMT52412.2021.9602691.
- [22] M. R. Alam, F. Bai, R. Yan, and T. K. Saha, “Classification and Visualization of Power Quality Disturbance-Events Using Space Vector Ellipse in Complex Plane,” IEEE Trans. Power Deliv., vol. 36, no. 3, pp. 1380–1389, 2021, doi: 10.1109/TPWRD.2020.3008003.
- [23] N. M. Khoa and D. D. Tung, “An extended Kalman filter for detecting voltage sag events in power systems,” J. Electr. Syst., vol. 14, no. 2, pp. 192–204, 2018, [Online]. Available: https://www.proquest.com/openview/17dc530e46e9e2bc3226e3dc476e9119/1?pq-origsite=gscholar&cbl=4433095
- [24] H. Zhang et al., “Multi-strategy active learning for power quality disturbance identification,” Appl. Soft Comput., vol. 154, p. 111326, Mar. 2024, doi: 10.1016/j.asoc.2024.111326.
- [25] N. K. Swarnkar, O. P. Mahela, and M. Lalwani, “Multivariable signal processing algorithm for identification of power quality disturbances,” Electr. Power Syst. Res., vol. 221, p. 109480, Aug. 2023, doi: 10.1016/j.epsr.2023.109480.
- [26] P. K. Ray, H. K. Sahoo, A. Mohanty, J. K. Bhutto, A. B. Barnawi, and A. A. Alshaya, “Robust H-Infinity Filter and PSO-SVM Based Monitoring of Power Quality Disturbances System,” IEEE Access, vol. 12, pp. 39041–39057, 2024, doi: 10.1109/ACCESS.2024.3367727.
- [27] R. Mahla, B. Khan, O. P. Mahela, and A. Singh, “Recognition of complex and multiple power quality disturbances using wavelet packet-based fast kurtogram and ruled decision tree algorithm,” Int. J. Model. Simulation, Sci. Comput., vol. 12, no. 05, p. 2150032, Oct. 2021, doi: 10.1142/S179396232150032X.
- [28] A. Akbarpour, M. Nafar, and M. Simab, “Multiple power quality disturbances detection and classification with fluctuations of amplitude and decision tree algorithm,” Electr. Eng., vol. 104, no. 4, pp. 2333–2343, Aug. 2022, doi: 10.1007/s00202-021-01481-5.
- [29] L. Chen, S. Chen, J. Xu, and C. Zhou, “Power quality disturbances identification based on deep neural network model of time-frequency feature fusion,” Electr. Power Syst. Res., vol. 231, p. 110283, Jun. 2024, doi: 10.1016/j.epsr.2024.110283.
- [30] R. Machlev, M. Perl, J. Belikov, K. Y. Levy, and Y. Levron, “Measuring Explainability and Trustworthiness of Power Quality Disturbances Classifiers Using XAI—Explainable Artificial Intelligence,” IEEE Trans. Ind. Informatics, vol. 18, no. 8, pp. 5127–5137, Aug. 2022, doi: 10.1109/TII.2021.3126111.
- [31] S. Akkaya, E. Yüksek, and H. M. Akgün, “A New Comparative Approach Based on Features of Subcomponents and Machine Learning Algorithms to Detect and Classify Power Quality Disturbances,” Electr. Power Components Syst., vol. 52, no. 8, pp. 1269–1292, May 2024, doi: 10.1080/15325008.2023.2260375.
- [32] N. A. Shafiqa Zakaria, D. M. Said, N. Rosmin, N. Ahmad, M. S. Shah Jamil, and S. Mirsaeidi, “Comparison analysis of different classification methods of power quality disturbances,” Int. J. Electr. Comput. Eng., vol. 12, no. 6, p. 5754, Dec. 2022, doi: 10.11591/ijece.v12i6.pp5754-5764.
- [33] C. I. Garcia, F. Grasso, A. Luchetta, M. C. Piccirilli, L. Paolucci, and G. Talluri, “A Comparison of Power Quality Disturbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM,” Appl. Sci., vol. 10, no. 19, p. 6755, Sep. 2020, doi: 10.3390/app10196755.
- [34] J. C. Bravo-Rodríguez, F. J. Torres, and M. D. Borrás, “Hybrid Machine Learning Models for Classifying Power Quality Disturbances: A Comparative Study,” Energies, vol. 13, no. 11, p. 2761, Jun. 2020, doi: 10.3390/en13112761.
- [35] G. Li, Z. Yu, B. Zheng, B. Qi, Z. Su, and D. Wang, “Voltage Sag Source Location based on the Random Forest,” J. Phys. Conf. Ser., vol. 2584, no. 1, p. 012144, Sep. 2023, doi: 10.1088/1742-6596/2584/1/012144.
- [36] Y. Mohammadi, A. Salarpour, and R. Chouhy Leborgne, “Comprehensive strategy for classification of voltage sags source location using optimal feature selection applied to support vector machine and ensemble techniques,” Int. J. Electr. Power Energy Syst., vol. 124, 2020, doi: 10.1016/j.ijepes.2020.106363.
- [37] E. A. Nagata et al., “Real-time voltage sag detection and classification for power quality diagnostics,” Meas. J. Int. Meas. Confed., vol. 164, 2020, doi: 10.1016/j.measurement.2020.108097.
- [38] W. Jiekang and C. Xiaohua, “An identification method for voltage sag in distribution systems using SVM with Grey Wolf algorithm,” Int. J. Power Energy Syst., vol. 44, no. 10, 2024, doi: 10.2316/J.2024.203-0434.
- [39] K. Thirumala, S. Pal, T. Jain, and A. C. Umarikar, “A classification method for multiple power quality disturbances using EWT based adaptive filtering and multiclass SVM,” Neurocomputing, vol. 334, pp. 265–274, 2019, doi: 10.1016/j.neucom.2019.01.038.
- [40] H. Sha, F. Mei, C. Zhang, Y. Pan, and J. Zheng, “Identification method for voltage sags based on K-means-singular value decomposition and least squares support vector machine,” Energies, vol. 12, no. 6, 2019, doi: 10.3390/en12061137.
- [41] Z. Liu, Y. Cui, and W. Li, “A Classification Method for Complex Power Quality Disturbances Using EEMD and Rank Wavelet SVM,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1678–1685, 2015, doi: 10.1109/TSG.2015.2397431.
- [42] Rahul and B. Choudhary, “An Advanced Genetic Algorithm with Improved Support Vector Machine for Multi-Class Classification of Real Power Quality Events,” Electr. Power Syst. Res., vol. 191, 2021, doi: 10.1016/j.epsr.2020.106879.
- [43] S. Der Lu, H. W. Sian, M. H. Wang, and R. M. Liao, “Application of extension neural network with discrete wavelet transform and Parseval’s theorem for power quality analysis,” Appl. Sci., 2019, doi: 10.3390/app9112228.
- [44] I. S. Samanta, P. K. Rout, S. Mishra, K. Swain, and M. Cherukuri, “Fast TT transform and optimized probabilistic neural network-based power quality event detection and classification,” Electr. Eng., vol. 104, no. 4, pp. 2757–2774, Aug. 2022, doi: 10.1007/s00202-022-01505-8.
- [45] V. Veeramsetty, A. Dhanush, A. Nagapradyullatha, G. R. Krishna, and S. R. Salkuti, “Power quality disturbances classification using autoencoder and radial basis function neural network,” Int. J. Emerg. Electr. Power Syst., vol. 0, no. 0, Sep. 2023, doi: 10.1515/ijeeps-2023-0143.
- [46] S. . Suganthi, A. Vinayagam, V. Veerasamy, A. Deepa, M. Abouhawwash, and M. Thirumeni, “Detection and classification of multiple power quality disturbances in Microgrid network using probabilistic based intelligent classifier,” Sustain. Energy Technol. Assessments, vol. 47, p. 101470, Oct. 2021, doi: 10.1016/j.seta.2021.101470.
- [47] O. Cortes-Robles, E. Barocio, A. Obushevs, P. Korba, and F. R. S. Sevilla, “Fast-training feedforward neural network for multi-scale power quality monitoring in power systems with distributed generation sources,” Measurement, vol. 170, p. 108690, Jan. 2021, doi: 10.1016/j.measurement.2020.108690.
- [48] H. Liu, F. Hussain, S. Yue, O. Yildirim, and S. J. Yawar, “Classification of multiple power quality events via compressed deep learning,” Int. Trans. Electr. Energy Syst., 2019, doi: 10.1002/2050-7038.12010.
- [49] Q. Xu et al., “Efficient Identification Method for Power Quality Disturbance: A Hybrid Data-Driven Strategy,” Processes, vol. 12, no. 7, p. 1395, Jul. 2024, doi: 10.3390/pr12071395.
- [50] M. Shao, Z. Han, J. Sun, C. Xiao, S. Zhang, and Y. Zhao, “A review of multi-criteria decision making applications for renewable energy site selection,” Renew. Energy, vol. 157, pp. 377–403, Sep. 2020, doi: 10.1016/j.renene.2020.04.137.
- [51] Y. Chen et al., “A Novel Approach for Evaluating Power Quality in Distributed Power Distribution Networks Using AHP and S-Transform,” Energies, vol. 17, no. 2, p. 411, Jan. 2024, doi: 10.3390/en17020411.
Referencias
[1] J. E. Caicedo, D. Agudelo-Martínez, E. Rivas-Trujillo, and J. Meyer, “A systematic review of real-time detection and classification of power quality disturbances,” Prot. Control Mod. Power Syst., vol. 8, no. 1, p. 3, 2023, doi: 10.1186/s41601-023-00277-y.
[2] “Power Quality Measurements Methods, Testing and Measurement Techniques,” IEC Std. 61000-4-30, 2019.
[3] M. H. J. Bollen, “What is power quality?,” Electr. Power Syst. Res., vol. 66, no. 1, pp. 5–14, 2003, doi: 10.1016/S0378-7796(03)00067-1.
[4] G. S. Chawda et al., “Comprehensive Review on Detection and Classification of Power Quality Disturbances in Utility Grid with Renewable Energy Penetration,” IEEE Access, vol. 8, pp. 146807–146830, 2020, doi: 10.1109/ACCESS.2020.3014732.
[5] M. Veizaga, C. Delpha, D. Diallo, S. Bercu, and L. Bertin, “Classification of voltage sags causes in industrial power networks using multivariate time-series,” IET Gener. Transm. Distrib., 2023, doi: 10.1049/gtd2.12765.
[6] É. M. Motoki, J. M. de C. Filho, P. M. da Silveira, N. B. Pereira, and P. V. G. de Souza, “Cost of Industrial Process Shutdowns Due to Voltage Sag and Short Interruption,” Energies, vol. 14, no. 10, p. 2874, May 2021, doi: 10.3390/en14102874.
[7] “IEEE Recommended Practice for Monitoring Electric Power Quality,” 2019. doi: 10.1109/IEEESTD.2019.8796486.
[8] J. E. Caicedo, E. Rivas, and J. Meyer, “Comparison of transformations and feature extraction techniques to characterize fault-induced voltage sags,” Simp. Int. sobre la Calid. la Energía Eléctrica - SICEL, vol. 11, Jan. 2024, doi: 10.15446/sicel.v11.110048.
[9] M. R. Alam, K. M. Muttaqi, and T. K. Saha, “Classification and Localization of Fault-Initiated Voltage Sags Using 3-D Polarization Ellipse Parameters,” IEEE Trans. Power Deliv., vol. 35, no. 4, pp. 1812–1822, 2020, doi: 10.1109/TPWRD.2019.2954857.
[10] L. F. A. Rodrigues, H. L. M. Monteiro, D. D. Ferreira, B. H. G. Barbosa, C. A. R. Junior, and C. A. Duque, “Sample-by-sample Power Quality Disturbance classification based on Sliding Window Recursive Discrete Fourier Transform,” Electr. Power Syst. Res., vol. 235, p. 110607, Oct. 2024, doi: 10.1016/j.epsr.2024.110607.
[11] I. S. Samanta et al., “A Comprehensive Review of Deep-Learning Applications to Power Quality Analysis,” Energies, vol. 16, no. 11, p. 4406, May 2023, doi: 10.3390/en16114406.
[12] R. Igual and C. Medrano, “Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review,” Renew. Sustain. Energy Rev., vol. 132, p. 110050, Oct. 2020, doi: 10.1016/j.rser.2020.110050.
[13] E. Perez-Anaya, A. Y. Jaen-Cuellar, D. A. Elvira-Ortiz, R. de J. Romero-Troncoso, and J. J. Saucedo-Dorantes, “Methodology for the Detection and Classification of Power Quality Disturbances Using CWT and CNN,” Energies, vol. 17, no. 4, p. 852, Feb. 2024, doi: 10.3390/en17040852.
[14] J. Li, Y. Yang, H. Lin, Z. Teng, F. Zhang, and Y. Xu, “A voltage sag detection method based on modified s transform with digital prolate spheroidal window,” IEEE Trans. Power Deliv., vol. 36, no. 2, pp. 997–1006, 2021, doi: 10.1109/TPWRD.2020.2999693.
[15] A. Bagheri, I. Y. H. Gu, M. H. J. Bollen, and E. Balouji, “A Robust Transform-Domain Deep Convolutional Network for Voltage Dip Classification,” IEEE Trans. Power Deliv., vol. 33, no. 6, pp. 2794–2802, 2018, doi: 10.1109/TPWRD.2018.2854677.
[16] L. Ramalingappa and A. Manjunatha, “Power quality event classification using complex wavelets phasor models and customized convolution neural network,” Int. J. Electr. Comput. Eng., vol. 12, no. 1, p. 22, Feb. 2022, doi: 10.11591/ijece.v12i1.pp22-31.
[17] Y. Pu, H. Yang, X. Ma, and X. Sun, “Recognition of voltage sag sources based on phase space reconstruction and improved VGG transfer learning,” Entropy, vol. 21, no. 10, 2019, doi: 10.3390/e21100999.
[18] Ç. Kocaman and M. Özdemir, “Determining five kinds of power quality disturbances by using statistical methods and wavelet energy coefficients,” Renew. Energy Power Qual. J., vol. 1, no. 15, pp. 745–750, 2017, doi: 10.24084/repqj15.455.
[19] A. D. Gonzalez-Abreu, M. Delgado-Prieto, J. J. Saucedo-Dorantes, and R. A. Osornio-Rios, “Novelty detection on power quality disturbances monitoring,” Renew. Energy Power Qual. J., vol. 19, pp. 211–216, 2021, doi: 10.24084/repqj19.259.
[20] W. L. Rodrigues Junior, F. A. S. Borges, R. de A. L. Rabelo, J. J. P. C. Rodrigues, R. A. S. Fernandes, and I. N. Silva, “A methodology for detection and classification of power quality disturbances using a real‐time operating system in the context of home energy management systems,” Int. J. Energy Res., vol. 45, no. 1, pp. 203–219, Jan. 2021, doi: 10.1002/er.5183.
[21] J. Xiu, X. Guangye, M. Xiangping, and D. Guilin, “Voltage sag detection method based on dq transform and complex wavelet transform,” in 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology, ICEEMT 2021, 2021, pp. 429–434. doi: 10.1109/ICEEMT52412.2021.9602691.
[22] M. R. Alam, F. Bai, R. Yan, and T. K. Saha, “Classification and Visualization of Power Quality Disturbance-Events Using Space Vector Ellipse in Complex Plane,” IEEE Trans. Power Deliv., vol. 36, no. 3, pp. 1380–1389, 2021, doi: 10.1109/TPWRD.2020.3008003.
[23] N. M. Khoa and D. D. Tung, “An extended Kalman filter for detecting voltage sag events in power systems,” J. Electr. Syst., vol. 14, no. 2, pp. 192–204, 2018, [Online]. Available: https://www.proquest.com/openview/17dc530e46e9e2bc3226e3dc476e9119/1?pq-origsite=gscholar&cbl=4433095
[24] H. Zhang et al., “Multi-strategy active learning for power quality disturbance identification,” Appl. Soft Comput., vol. 154, p. 111326, Mar. 2024, doi: 10.1016/j.asoc.2024.111326.
[25] N. K. Swarnkar, O. P. Mahela, and M. Lalwani, “Multivariable signal processing algorithm for identification of power quality disturbances,” Electr. Power Syst. Res., vol. 221, p. 109480, Aug. 2023, doi: 10.1016/j.epsr.2023.109480.
[26] P. K. Ray, H. K. Sahoo, A. Mohanty, J. K. Bhutto, A. B. Barnawi, and A. A. Alshaya, “Robust H-Infinity Filter and PSO-SVM Based Monitoring of Power Quality Disturbances System,” IEEE Access, vol. 12, pp. 39041–39057, 2024, doi: 10.1109/ACCESS.2024.3367727.
[27] R. Mahla, B. Khan, O. P. Mahela, and A. Singh, “Recognition of complex and multiple power quality disturbances using wavelet packet-based fast kurtogram and ruled decision tree algorithm,” Int. J. Model. Simulation, Sci. Comput., vol. 12, no. 05, p. 2150032, Oct. 2021, doi: 10.1142/S179396232150032X.
[28] A. Akbarpour, M. Nafar, and M. Simab, “Multiple power quality disturbances detection and classification with fluctuations of amplitude and decision tree algorithm,” Electr. Eng., vol. 104, no. 4, pp. 2333–2343, Aug. 2022, doi: 10.1007/s00202-021-01481-5.
[29] L. Chen, S. Chen, J. Xu, and C. Zhou, “Power quality disturbances identification based on deep neural network model of time-frequency feature fusion,” Electr. Power Syst. Res., vol. 231, p. 110283, Jun. 2024, doi: 10.1016/j.epsr.2024.110283.
[30] R. Machlev, M. Perl, J. Belikov, K. Y. Levy, and Y. Levron, “Measuring Explainability and Trustworthiness of Power Quality Disturbances Classifiers Using XAI—Explainable Artificial Intelligence,” IEEE Trans. Ind. Informatics, vol. 18, no. 8, pp. 5127–5137, Aug. 2022, doi: 10.1109/TII.2021.3126111.
[31] S. Akkaya, E. Yüksek, and H. M. Akgün, “A New Comparative Approach Based on Features of Subcomponents and Machine Learning Algorithms to Detect and Classify Power Quality Disturbances,” Electr. Power Components Syst., vol. 52, no. 8, pp. 1269–1292, May 2024, doi: 10.1080/15325008.2023.2260375.
[32] N. A. Shafiqa Zakaria, D. M. Said, N. Rosmin, N. Ahmad, M. S. Shah Jamil, and S. Mirsaeidi, “Comparison analysis of different classification methods of power quality disturbances,” Int. J. Electr. Comput. Eng., vol. 12, no. 6, p. 5754, Dec. 2022, doi: 10.11591/ijece.v12i6.pp5754-5764.
[33] C. I. Garcia, F. Grasso, A. Luchetta, M. C. Piccirilli, L. Paolucci, and G. Talluri, “A Comparison of Power Quality Disturbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM,” Appl. Sci., vol. 10, no. 19, p. 6755, Sep. 2020, doi: 10.3390/app10196755.
[34] J. C. Bravo-Rodríguez, F. J. Torres, and M. D. Borrás, “Hybrid Machine Learning Models for Classifying Power Quality Disturbances: A Comparative Study,” Energies, vol. 13, no. 11, p. 2761, Jun. 2020, doi: 10.3390/en13112761.
[35] G. Li, Z. Yu, B. Zheng, B. Qi, Z. Su, and D. Wang, “Voltage Sag Source Location based on the Random Forest,” J. Phys. Conf. Ser., vol. 2584, no. 1, p. 012144, Sep. 2023, doi: 10.1088/1742-6596/2584/1/012144.
[36] Y. Mohammadi, A. Salarpour, and R. Chouhy Leborgne, “Comprehensive strategy for classification of voltage sags source location using optimal feature selection applied to support vector machine and ensemble techniques,” Int. J. Electr. Power Energy Syst., vol. 124, 2020, doi: 10.1016/j.ijepes.2020.106363.
[37] E. A. Nagata et al., “Real-time voltage sag detection and classification for power quality diagnostics,” Meas. J. Int. Meas. Confed., vol. 164, 2020, doi: 10.1016/j.measurement.2020.108097.
[38] W. Jiekang and C. Xiaohua, “An identification method for voltage sag in distribution systems using SVM with Grey Wolf algorithm,” Int. J. Power Energy Syst., vol. 44, no. 10, 2024, doi: 10.2316/J.2024.203-0434.
[39] K. Thirumala, S. Pal, T. Jain, and A. C. Umarikar, “A classification method for multiple power quality disturbances using EWT based adaptive filtering and multiclass SVM,” Neurocomputing, vol. 334, pp. 265–274, 2019, doi: 10.1016/j.neucom.2019.01.038.
[40] H. Sha, F. Mei, C. Zhang, Y. Pan, and J. Zheng, “Identification method for voltage sags based on K-means-singular value decomposition and least squares support vector machine,” Energies, vol. 12, no. 6, 2019, doi: 10.3390/en12061137.
[41] Z. Liu, Y. Cui, and W. Li, “A Classification Method for Complex Power Quality Disturbances Using EEMD and Rank Wavelet SVM,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1678–1685, 2015, doi: 10.1109/TSG.2015.2397431.
[42] Rahul and B. Choudhary, “An Advanced Genetic Algorithm with Improved Support Vector Machine for Multi-Class Classification of Real Power Quality Events,” Electr. Power Syst. Res., vol. 191, 2021, doi: 10.1016/j.epsr.2020.106879.
[43] S. Der Lu, H. W. Sian, M. H. Wang, and R. M. Liao, “Application of extension neural network with discrete wavelet transform and Parseval’s theorem for power quality analysis,” Appl. Sci., 2019, doi: 10.3390/app9112228.
[44] I. S. Samanta, P. K. Rout, S. Mishra, K. Swain, and M. Cherukuri, “Fast TT transform and optimized probabilistic neural network-based power quality event detection and classification,” Electr. Eng., vol. 104, no. 4, pp. 2757–2774, Aug. 2022, doi: 10.1007/s00202-022-01505-8.
[45] V. Veeramsetty, A. Dhanush, A. Nagapradyullatha, G. R. Krishna, and S. R. Salkuti, “Power quality disturbances classification using autoencoder and radial basis function neural network,” Int. J. Emerg. Electr. Power Syst., vol. 0, no. 0, Sep. 2023, doi: 10.1515/ijeeps-2023-0143.
[46] S. . Suganthi, A. Vinayagam, V. Veerasamy, A. Deepa, M. Abouhawwash, and M. Thirumeni, “Detection and classification of multiple power quality disturbances in Microgrid network using probabilistic based intelligent classifier,” Sustain. Energy Technol. Assessments, vol. 47, p. 101470, Oct. 2021, doi: 10.1016/j.seta.2021.101470.
[47] O. Cortes-Robles, E. Barocio, A. Obushevs, P. Korba, and F. R. S. Sevilla, “Fast-training feedforward neural network for multi-scale power quality monitoring in power systems with distributed generation sources,” Measurement, vol. 170, p. 108690, Jan. 2021, doi: 10.1016/j.measurement.2020.108690.
[48] H. Liu, F. Hussain, S. Yue, O. Yildirim, and S. J. Yawar, “Classification of multiple power quality events via compressed deep learning,” Int. Trans. Electr. Energy Syst., 2019, doi: 10.1002/2050-7038.12010.
[49] Q. Xu et al., “Efficient Identification Method for Power Quality Disturbance: A Hybrid Data-Driven Strategy,” Processes, vol. 12, no. 7, p. 1395, Jul. 2024, doi: 10.3390/pr12071395.
[50] M. Shao, Z. Han, J. Sun, C. Xiao, S. Zhang, and Y. Zhao, “A review of multi-criteria decision making applications for renewable energy site selection,” Renew. Energy, vol. 157, pp. 377–403, Sep. 2020, doi: 10.1016/j.renene.2020.04.137.
[51] Y. Chen et al., “A Novel Approach for Evaluating Power Quality in Distributed Power Distribution Networks Using AHP and S-Transform,” Energies, vol. 17, no. 2, p. 411, Jan. 2024, doi: 10.3390/en17020411.