Derechos de autor 2025 Investigación e Innovación en Ingenierías

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Influencia de los parámetros operacionales en la pirólisis de biomasa con reactores Auger
Corresponding Author(s) : Alberto Ricardo Albis Arrieta
Investigación e Innovación en Ingenierías,
Vol. 13 Núm. 1 (2025): Enero - junio
Resumen
Objetivo: Revisar los últimos avances en el uso de reactores Auger en la pirólisis de diferentes tipos de biomasa, la influencia de los parámetros de operación en la obtención de los productos de pirólisis deseados y algunas técnicas de caracterización del bio-aceite producido.
Metodología: Se utilizó la plataforma Scopus para realizar una búsqueda de la temática en los últimos 7 años (2017-2024) con las palabras claves en inglés [Auger], [Pirólisis], [Biomasa], [Residuos].
Resultados: La pirólisis es el proceso de descomposición termoquímica de la biomasa en condiciones de limitación de oxígeno. Sus productos principales son biocarbón, bio-aceite y gases incondensables. Las proporciones y características de estos productos dependen del tipo de pirólisis (lenta, rápida, flash), el tipo de biomasa y de los parámetros de operación, como el tiempo de residencia, la tasa de calentamiento, la temperatura y el tamaño de partícula. El uso de reactores Auger para la pirólisis se ha identificado como un proceso flexible, de fácil operación y gran potencial para implementarse a pequeña y baja escala, tanto en la pirólisis lenta como en la pirólisis rápida de biomasa.
Conclusiones: El pretratamiento de la materia prima, la temperatura y el caudal de gas de arrastre, juegan un papel crucial en la obtención de productos de alta calidad, razón por la cual deben ser optimizados.
Palabras clave
Descargar cita
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Forero, “Fondo de Estabilizacion de Precios de los Combustibles: impacto macroeconomico e incidencia sobre el consumo de recursos energeticos,” Universidad de Los Andes, 2023.
- V. Tyagi and K. Aboudi, Clean Energy and Resources Recovery, 1st ed., vol. 1. Biomass Waste Based Biorefineries, 2021.
- V. C. Gallego and P. A. Villegas-Bolaños, “Recovery of waste from sugarcane bagasse and plastics for the generation of energy compounds,” Produccion y Limpia, vol. 16, no. 1, pp. 117–135, Sep. 2021, doi: 10.22507/PML.V16N1A7.
- K. M. Prasad and S. Murugavelh, “Experimental investigation and kinetics of tomato peel pyrolysis: Performance, combustion and emission characteristics of bio-oil blends in diesel engine,” J Clean Prod, vol. 254, Jun. 2020, doi: 10.1016/j.jclepro.2020.120115.
- Q. Kang et al., “Microwave-assisted pyrolysis of furfural residue in a continuously operated auger reactor: Characterization and analyses of condensates and non-condensable gases,” Energy, vol. 187, Nov. 2019, doi: 10.1016/j.energy.2019.116103.
- J. Solar, B. M. Caballero, A. López-Urionabarrenechea, E. Acha, and P. L. Arias, “Pyrolysis of Forestry Waste in a Screw Reactor with Four Sequential Heating Zones: Influence of Isothermal and Nonisothermal Profiles,” Ind Eng Chem Res, vol. 60, no. 51, pp. 18627–18639, Jun. 2021, doi: 10.1021/acs.iecr.1c01932.
- S. Mandal, J. Haydary, T. K. Bhattacharya, H. R. Tanna, J. Husar, and A. Haz, “Valorization of Pine Needles by Thermal Conversion to Solid, Liquid and Gaseous Fuels in a Screw Reactor,” Waste Biomass Valorization, vol. 10, no. 12, pp. 3587–3599, Dec. 2019, doi: 10.1007/s12649-018-0386-7.
- F. Mo, H. Ullah, N. Zada, and A. Shahab, “A Review on Catalytic Co-Pyrolysis of Biomass and Plastics Waste as a Thermochemical Conversion to Produce Valuable Products,” Energies (Basel), vol. 16, no. 14, p. 5403, Jul. 2023, doi: 10.3390/en16145403.
- H. A.-H. Ibrahim, “Pyrolysis in the Chemical Industry and Its Major Industrial Applications,” Innovation in Science and Technology, vol. 2, no. 2, pp. 1–11, Mar. 2023, doi: 10.56397/IST.2023.03.01.
- M. Landrat, M. T. Abawalo, K. Pikoń, and R. Turczyn, “Bio-Oil Derived from Teff Husk via Slow Pyrolysis Process in Fixed Bed Reactor and Its Characterization,” Energies (Basel), vol. 15, no. 24, Dec. 2022, doi: 10.3390/en15249605.
- E. Pienihäkkinen et al., “Fast Pyrolysis of Hydrolysis Lignin in Fluidized Bed Reactors,” Energy and Fuels, vol. 35, no. 18, pp. 14758–14769, Sep. 2021, doi: 10.1021/acs.energyfuels.1c01719.
- S. Jalalifar et al., “CFD analysis of fast pyrolysis process in a pilot-scale auger reactor,” Fuel, vol. 273, Jun. 2020, doi: 10.1016/j.fuel.2020.117782.
- M. Raza et al., “Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing,” Sustainability, vol. 13, no. 19, p. 11061, Oct. 2021, doi: 10.3390/su131911061.
- J. Xiong et al., “Auger-propelled horizontal biomass pyrolysis device with thermoelectric power generation function,” CN111704922A, 2020
- L. Kapoor, D. Bose, and A. Mekala, “Biomass pyrolysis in a twin-screw reactor to produce green fuels,” Biofuels, vol. 11, no. 1, pp. 101–107, Jan. 2020, doi: 10.1080/17597269.2017.1345360.
- G. BELE, M. BENALI, and P. STUART, “Comparative analysis and benchmarking of commercial and emerging fast pyrolysis technologies,” Tappi J, vol. 22, no. 5, pp. 283–303, Jun. 2023, doi: 10.32964/TJ22.5.283.
- F. Campuzano, R. C. Brown, and J. D. Martínez, “Auger reactors for pyrolysis of biomass and wastes,” Renewable and Sustainable Energy Reviews, vol. 102, pp. 372–409, Mar. 2019, doi: 10.1016/j.rser.2018.12.014.
- N. S. Ab. Rasid, M. Asadullah, N. H. Malek, and N. A. S. Amin, “Fast pyrolysis of oil palm empty fruit bunch in an auger reactor: bio-oil composition and characteristics,” IOP Conf Ser Mater Sci Eng, vol. 736, no. 3, p. 032021, Jan. 2020, doi: 10.1088/1757-899X/736/3/032021.
- M. Pichler, B. Haddadi, C. Jordan, H. Norouzi, and M. Harasek, “Influence of particle residence time distribution on the biomass pyrolysis in a rotary kiln,” J Anal Appl Pyrolysis, vol. 158, Sep. 2021, doi: 10.1016/j.jaap.2021.105171.
- F. Qi and M. M. Wright, “A DEM modeling of biomass fast pyrolysis in a double auger reactor,” Int J Heat Mass Transf, vol. 150, Jun. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119308.
- C. Pedraza, F. Higuera, and A. Albis, REACTOR A ESCALA AUGER PARA PIRÓLISIS RÁPIDA DE BIOMASA AGROINDUSTRIAL PARA LA OBTENCIÓN DE BIOCOMBUSTIBLES CON FINES INVESTIGATIVOS. Barranquilla: Editorial Universidad del Atlántico, 2023.
- C. Ran et al., “Pyrolysis of textile dyeing sludge in fluidized bed and microwave-assisted auger reactor: Comparison, migration and distribution of heavy metals,” Energy, vol. 182, pp. 337–348, Jun. 2019, doi: 10.1016/j.energy.2019.05.219.
- A. G. H. Saif, S. S. Wahid, and M. R. O. Ali, “Pyrolysis of sugarcane bagasse: The effects of process parameters on the product yields,” in Materials Science Forum, Trans Tech Publications Ltd, 2020, pp. 159–167. doi: 10.4028/www.scientific.net/MSF.1008.159.
- P. Evangelopoulos, H. Persson, E. Kantarelis, and W. Yang, “Performance analysis and fate of bromine in a single screw reactor for pyrolysis of waste electrical and electronic equipment (WEEE),” Process Safety and Environmental Protection, vol. 143, pp. 313–321, Jun. 2020, doi: 10.1016/j.psep.2020.07.006.
- S. Ledakowicz and O. Piddubniak, “The Non-Stationary Heat Transport inside a Shafted Screw Conveyor Filled with Homogeneous Biomass Heated Electrically,” Energies (Basel), vol. 15, no. 17, Sep. 2022, doi: 10.3390/en15176164.
- S. Ledakowicz and O. Piddubniak, “Analysis of non-stationary temperature field generated by a shaftless screw conveyor heated by Joule-Lenz effect,” Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa, vol. 42, no. 2, pp. 119–137, 2021, doi: 10.24425/cpe.2021.138920.
- A. Funke, R. Grandl, M. Ernst, and N. Dahmen, “Modelling and improvement of heat transfer coefficient in auger type reactors for fast pyrolysis application,” Chemical Engineering and Processing - Process Intensification, vol. 130, pp. 67–75, Aug. 2018, doi: 10.1016/j.cep.2018.05.023.
- J. Pardo Salazar, M. D. Sierra Hernández, and C. A. Pedraza Yepes, “Diseño de un reactor de tornillos para la obtención de bioaceite a partir de pirólisis rápida de biomasa residual,” Investigación e Innovación en Ingenierías, vol. 9, no. 2, pp. 26–41, Jul. 2021, doi: 10.17081/invinno.9.2.4209.
- B. O. Adelawon, G. K. Latinwo, B. E. Eboibi, O. O. Agbede, and S. E. Agarry, “Comparison of the slow, fast, and flash pyrolysis of recycled maize-cob biomass waste, box-benhken process optimization and characterization studies for the thermal fast pyrolysis production of bio-energy,” Chem Eng Commun, vol. 209, no. 9, pp. 1246–1276, 2022, doi: 10.1080/00986445.2021.1957851.
- B. Chávez, “Evaluación de la pirólisis rápida en reactor tipo Auger (doble tornillo sinfín) para el aprovechamiento de biomasas residuales de origen agroindustrial en el departamento Norte de Santander.,” 2023.
- J. O. Ighalo et al., “Flash pyrolysis of biomass: a review of recent advances,” Clean Technol Environ Policy, 2022, doi: 10.1007/s10098-022-02339-5.
- L. Kapoor, D. Bose, and A. Mekala, “Biomass pyrolysis in a twin-screw reactor to produce green fuels,” Biofuels, vol. 11, no. 1, pp. 101–107, Jan. 2020, doi: 10.1080/17597269.2017.1345360.
- W. M. Lewandowski, K. Januszewicz, and W. Kosakowski, “Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type—A review,” Jun. 01, 2019, Elsevier B.V. doi: 10.1016/j.jaap.2019.03.018.
- O. Sanahuja-Parejo, A. Veses, J. M. López, R. Murillo, M. S. Callén, and T. García, “Ca-based catalysts for the production of high-quality bio-oils from the catalytic co-pyrolysis of grape seeds and waste tyres,” Catalysts, vol. 9, no. 12, Jun. 2019, doi: 10.3390/catal9120992.
- K. B. Park, Y. S. Jeong, B. Guzelciftci, and J. S. Kim, “Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes,” Appl Energy, vol. 259, Jun. 2020, doi: 10.1016/j.apenergy.2019.114240.
- H. S. Altundoğan, M. Ş. Tanyıldızı, M. Kalender, S. Elçiçek, and D. Pehlivan, “A novel screw-type pyrolysis system for selectively producing value-added chemicals from lignocellulosic biomass,” Biomass Convers Biorefin, Jun. 2024, doi: 10.1007/s13399-024-05791-z.
- F. G. Fonseca, A. Funke, A. Niebel, A. P. Soares Dias, and N. Dahmen, “Moisture content as a design and operational parameter for fast pyrolysis,” J Anal Appl Pyrolysis, vol. 139, pp. 73–86, May 2019, doi: 10.1016/j.jaap.2019.01.012.
- Y. Makkawi, Y. El Sayed, D. A. Lyra, F. H. Pour, M. Khan, and M. Badrelzaman, “Assessment of the pyrolysis products from halophyte Salicornia bigelovii cultivated in a desert environment,” Fuel, vol. 290, Jun. 2021, doi: 10.1016/j.fuel.2020.119518.
- M. A. H. Salgado, J. A. C. S, and L. A. C. Tarelho, “Simultaneous production of biochar and thermal energy using palm oil residual biomass as feedstock in an auto-thermal prototype reactor,” J Clean Prod, vol. 266, Jun. 2020, doi: 10.1016/j.jclepro.2020.121804.
- C. Zhou et al., “Co-pyrolysis of textile dyeing sludge and red wood waste in a continuously operated auger reactor under microwave irradiation,” Energy, vol. 218, Jun. 2021, doi: 10.1016/j.energy.2020.119398.
- A. Krutof and K. A. Hawboldt, “Thermodynamic model of fast pyrolysis bio-oil advanced distillation curves,” Fuel, vol. 261, Jun. 2020, doi: 10.1016/j.fuel.2019.116446.
- K. B. Park, Y. S. Jeong, B. Guzelciftci, and J. S. Kim, “Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes,” Appl Energy, vol. 259, Jun. 2020, doi: 10.1016/j.apenergy.2019.114240.
- L. Rodríguez-Machín et al., “The effect of citric acid pretreatment on composition and stability of bio-oil from sugar cane residues using a continuous lab-scale pyrolysis reactor,” J Anal Appl Pyrolysis, vol. 175, p. 106183, Oct. 2023, doi: 10.1016/j.jaap.2023.106183.
- A. Funke, R. Grandl, M. Ernst, and N. Dahmen, “Modelling and improvement of heat transfer coefficient in auger type reactors for fast pyrolysis application,” Chemical Engineering and Processing - Process Intensification, vol. 130, pp. 67–75, Jun. 2018, doi: 10.1016/j.cep.2018.05.023.
- N. S. Kamarudin et al., “Biochar: A review of its history, characteristics, factors that influence its yield, methods of production, application in wastewater treatment and recent development,” Biointerface Res Appl Chem, vol. 12, no. 6, pp. 7914–7926, Dec. 2022, doi: 10.33263/BRIAC126.79147926.
- S. D. Ferreira, C. Manera, W. P. Silvestre, G. F. Pauletti, C. R. Altafini, and M. Godinho, “Use of Biochar Produced from Elephant Grass by Pyrolysis in a Screw Reactor as a Soil Amendment,” Waste Biomass Valorization, vol. 10, no. 10, pp. 3089–3100, Oct. 2019, doi: 10.1007/s12649-018-0347-1.
- P. Brassard, S. Godbout, and V. Raghavan, “Pyrolysis in auger reactors for biochar and bio-oil production: A review,” Jun. 2017, Academic Press. doi: 10.1016/j.biosystemseng.2017.06.020.
- N. S. A. Rasid, M. Asadullah, N. H. Malek, and N. A. S. Amin, “Fast pyrolysis of oil palm empty fruit bunch in an auger reactor: Bio-oil composition and characteristics,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1757-899X/736/3/032021.
- J. Grafmüller et al., “Wood Ash as an Additive in Biomass Pyrolysis: Effects on Biochar Yield, Properties, and Agricultural Performance,” ACS Sustain Chem Eng, vol. 10, no. 8, pp. 2720–2729, Jun. 2022, doi: 10.1021/acssuschemeng.1c07694.
- A. G. H. Saif, S. S. Wahid, and M. R. O. Ali, “Pyrolysis of sugarcane bagasse: The effects of process parameters on the product yields,” in Materials Science Forum, Trans Tech Publications Ltd, 2020, pp. 159–167. doi: 10.4028/www.scientific.net/MSF.1008.159.
- S. M. Al-Salem, Y. Yang, J. Wang, and G. A. Leeke, “Pyro-oil and wax recovery from reclaimed plastic waste in a continuous Auger pyrolysis reactor,” Energies (Basel), vol. 13, no. 8, Apr. 2020, doi: 10.3390/en13082040.
- S. Zinchik et al., “Evaluation of fast pyrolysis feedstock conversion with a mixing paddle reactor,” Fuel Processing Technology, vol. 171, pp. 124–132, Mar. 2018, doi: 10.1016/j.fuproc.2017.11.012.
- M. M. Hasan, M. G. Rasul, M. I. Jahirul, and M. M. K. Khan, “Fast Pyrolysis of Municipal Green Waste in an Auger Reactor: Effects of Residence Time and Particle Size on the Yield and Characteristics of Produced Oil,” Energies (Basel), vol. 17, no. 12, p. 2914, Jun. 2024, doi: 10.3390/en17122914.
- H. R. Zolfagharpour, A. Sharafati, and M. Hosseinzadeh, “Catalytic pyrolysis of sugarcane bagasse using V2O5 nanoparticles in an auger reactor,” J Anal Appl Pyrolysis, vol. 177, p. 106357, Jan. 2024, doi: 10.1016/j.jaap.2024.106357.
- A. A. Papa et al., “The effect of pyrolysis temperature on the optimal conversion of residual biomass to clean syngas through fast-pyrolysis/steam gasification integration,” Int J Hydrogen Energy, Sep. 2024, doi: 10.1016/j.ijhydene.2024.09.100.
- M. M. Hasan, M. G. Rasul, M. I. Jahirul, and M. M. K. Khan, “Characterization of pyrolysis oil produced from organic and plastic wastes using an auger reactor,” Energy Convers Manag, vol. 278, p. 116723, Feb. 2023, doi: 10.1016/j.enconman.2023.116723.
- R. Alfonso Viltres-Rodríguez, “Caracterización química del bio-aceite de pirólisis rápida de biomasa Chemical characterization of bio-oil of the fast pyrolysis from biomass,” 2022. [Online]. Available: https://orcid.org/0000-0002-3634-5284AlejandroAlarcón-Zayas1https://orcid.org/0000-0002-3539-3938
- V. Volli, A. R. K. Gollakota, and C. M. Shu, “Comparative studies on thermochemical behavior and kinetics of lignocellulosic biomass residues using TG-FTIR and Py-GC/MS,” Science of the Total Environment, vol. 792, Oct. 2021, doi: 10.1016/j.scitotenv.2021.148392.
- Y. Chen, K. Liu, N. Hu, Y. Lou, F. Wang, and Y. Wang, “Biochemical composition of soil organic matter physical fractions under 32-year fertilization in Ferralic Cambisol,” Carbon Research, vol. 2, no. 1, Dec. 2023, doi: 10.1007/s44246-022-00034-0.
- M. M. Hasan, M. G. Rasul, M. I. Jahirul, and M. M. K. Khan, “Fast pyrolysis of macadamia nutshell in an auger reactor: Process optimization using response surface methodology (RSM) and oil characterization,” Fuel, vol. 333, Jun. 2023, doi: 10.1016/j.fuel.2022.126490.
- G. Gómez, A. Giovanny, and M. Rodriguez, “OBTENCIÓN ARTESANAL DE BIOETANOL MEDIANTE DESECHOS DE LA CÁSCARA DE PLÁTANO,” 2021.
- M. A. H. Salgado, J. A. C. S, and L. A. C. Tarelho, “Simultaneous production of biochar and thermal energy using palm oil residual biomass as feedstock in an auto-thermal prototype reactor,” J Clean Prod, vol. 266, Jun. 2020, doi: 10.1016/j.jclepro.2020.121804.
- X. Xu, R. Tu, Y. Sun, Z. Li, and E. Jiang, “Influence of biomass pretreatment on upgrading of bio-oil: Comparison of dry and hydrothermal torrefaction,” Bioresour Technol, vol. 262, pp. 261–270, Aug. 2018, doi: 10.1016/j.biortech.2018.04.037.
Referencias
J. Forero, “Fondo de Estabilizacion de Precios de los Combustibles: impacto macroeconomico e incidencia sobre el consumo de recursos energeticos,” Universidad de Los Andes, 2023.
V. Tyagi and K. Aboudi, Clean Energy and Resources Recovery, 1st ed., vol. 1. Biomass Waste Based Biorefineries, 2021.
V. C. Gallego and P. A. Villegas-Bolaños, “Recovery of waste from sugarcane bagasse and plastics for the generation of energy compounds,” Produccion y Limpia, vol. 16, no. 1, pp. 117–135, Sep. 2021, doi: 10.22507/PML.V16N1A7.
K. M. Prasad and S. Murugavelh, “Experimental investigation and kinetics of tomato peel pyrolysis: Performance, combustion and emission characteristics of bio-oil blends in diesel engine,” J Clean Prod, vol. 254, Jun. 2020, doi: 10.1016/j.jclepro.2020.120115.
Q. Kang et al., “Microwave-assisted pyrolysis of furfural residue in a continuously operated auger reactor: Characterization and analyses of condensates and non-condensable gases,” Energy, vol. 187, Nov. 2019, doi: 10.1016/j.energy.2019.116103.
J. Solar, B. M. Caballero, A. López-Urionabarrenechea, E. Acha, and P. L. Arias, “Pyrolysis of Forestry Waste in a Screw Reactor with Four Sequential Heating Zones: Influence of Isothermal and Nonisothermal Profiles,” Ind Eng Chem Res, vol. 60, no. 51, pp. 18627–18639, Jun. 2021, doi: 10.1021/acs.iecr.1c01932.
S. Mandal, J. Haydary, T. K. Bhattacharya, H. R. Tanna, J. Husar, and A. Haz, “Valorization of Pine Needles by Thermal Conversion to Solid, Liquid and Gaseous Fuels in a Screw Reactor,” Waste Biomass Valorization, vol. 10, no. 12, pp. 3587–3599, Dec. 2019, doi: 10.1007/s12649-018-0386-7.
F. Mo, H. Ullah, N. Zada, and A. Shahab, “A Review on Catalytic Co-Pyrolysis of Biomass and Plastics Waste as a Thermochemical Conversion to Produce Valuable Products,” Energies (Basel), vol. 16, no. 14, p. 5403, Jul. 2023, doi: 10.3390/en16145403.
H. A.-H. Ibrahim, “Pyrolysis in the Chemical Industry and Its Major Industrial Applications,” Innovation in Science and Technology, vol. 2, no. 2, pp. 1–11, Mar. 2023, doi: 10.56397/IST.2023.03.01.
M. Landrat, M. T. Abawalo, K. Pikoń, and R. Turczyn, “Bio-Oil Derived from Teff Husk via Slow Pyrolysis Process in Fixed Bed Reactor and Its Characterization,” Energies (Basel), vol. 15, no. 24, Dec. 2022, doi: 10.3390/en15249605.
E. Pienihäkkinen et al., “Fast Pyrolysis of Hydrolysis Lignin in Fluidized Bed Reactors,” Energy and Fuels, vol. 35, no. 18, pp. 14758–14769, Sep. 2021, doi: 10.1021/acs.energyfuels.1c01719.
S. Jalalifar et al., “CFD analysis of fast pyrolysis process in a pilot-scale auger reactor,” Fuel, vol. 273, Jun. 2020, doi: 10.1016/j.fuel.2020.117782.
M. Raza et al., “Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing,” Sustainability, vol. 13, no. 19, p. 11061, Oct. 2021, doi: 10.3390/su131911061.
J. Xiong et al., “Auger-propelled horizontal biomass pyrolysis device with thermoelectric power generation function,” CN111704922A, 2020
L. Kapoor, D. Bose, and A. Mekala, “Biomass pyrolysis in a twin-screw reactor to produce green fuels,” Biofuels, vol. 11, no. 1, pp. 101–107, Jan. 2020, doi: 10.1080/17597269.2017.1345360.
G. BELE, M. BENALI, and P. STUART, “Comparative analysis and benchmarking of commercial and emerging fast pyrolysis technologies,” Tappi J, vol. 22, no. 5, pp. 283–303, Jun. 2023, doi: 10.32964/TJ22.5.283.
F. Campuzano, R. C. Brown, and J. D. Martínez, “Auger reactors for pyrolysis of biomass and wastes,” Renewable and Sustainable Energy Reviews, vol. 102, pp. 372–409, Mar. 2019, doi: 10.1016/j.rser.2018.12.014.
N. S. Ab. Rasid, M. Asadullah, N. H. Malek, and N. A. S. Amin, “Fast pyrolysis of oil palm empty fruit bunch in an auger reactor: bio-oil composition and characteristics,” IOP Conf Ser Mater Sci Eng, vol. 736, no. 3, p. 032021, Jan. 2020, doi: 10.1088/1757-899X/736/3/032021.
M. Pichler, B. Haddadi, C. Jordan, H. Norouzi, and M. Harasek, “Influence of particle residence time distribution on the biomass pyrolysis in a rotary kiln,” J Anal Appl Pyrolysis, vol. 158, Sep. 2021, doi: 10.1016/j.jaap.2021.105171.
F. Qi and M. M. Wright, “A DEM modeling of biomass fast pyrolysis in a double auger reactor,” Int J Heat Mass Transf, vol. 150, Jun. 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119308.
C. Pedraza, F. Higuera, and A. Albis, REACTOR A ESCALA AUGER PARA PIRÓLISIS RÁPIDA DE BIOMASA AGROINDUSTRIAL PARA LA OBTENCIÓN DE BIOCOMBUSTIBLES CON FINES INVESTIGATIVOS. Barranquilla: Editorial Universidad del Atlántico, 2023.
C. Ran et al., “Pyrolysis of textile dyeing sludge in fluidized bed and microwave-assisted auger reactor: Comparison, migration and distribution of heavy metals,” Energy, vol. 182, pp. 337–348, Jun. 2019, doi: 10.1016/j.energy.2019.05.219.
A. G. H. Saif, S. S. Wahid, and M. R. O. Ali, “Pyrolysis of sugarcane bagasse: The effects of process parameters on the product yields,” in Materials Science Forum, Trans Tech Publications Ltd, 2020, pp. 159–167. doi: 10.4028/www.scientific.net/MSF.1008.159.
P. Evangelopoulos, H. Persson, E. Kantarelis, and W. Yang, “Performance analysis and fate of bromine in a single screw reactor for pyrolysis of waste electrical and electronic equipment (WEEE),” Process Safety and Environmental Protection, vol. 143, pp. 313–321, Jun. 2020, doi: 10.1016/j.psep.2020.07.006.
S. Ledakowicz and O. Piddubniak, “The Non-Stationary Heat Transport inside a Shafted Screw Conveyor Filled with Homogeneous Biomass Heated Electrically,” Energies (Basel), vol. 15, no. 17, Sep. 2022, doi: 10.3390/en15176164.
S. Ledakowicz and O. Piddubniak, “Analysis of non-stationary temperature field generated by a shaftless screw conveyor heated by Joule-Lenz effect,” Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa, vol. 42, no. 2, pp. 119–137, 2021, doi: 10.24425/cpe.2021.138920.
A. Funke, R. Grandl, M. Ernst, and N. Dahmen, “Modelling and improvement of heat transfer coefficient in auger type reactors for fast pyrolysis application,” Chemical Engineering and Processing - Process Intensification, vol. 130, pp. 67–75, Aug. 2018, doi: 10.1016/j.cep.2018.05.023.
J. Pardo Salazar, M. D. Sierra Hernández, and C. A. Pedraza Yepes, “Diseño de un reactor de tornillos para la obtención de bioaceite a partir de pirólisis rápida de biomasa residual,” Investigación e Innovación en Ingenierías, vol. 9, no. 2, pp. 26–41, Jul. 2021, doi: 10.17081/invinno.9.2.4209.
B. O. Adelawon, G. K. Latinwo, B. E. Eboibi, O. O. Agbede, and S. E. Agarry, “Comparison of the slow, fast, and flash pyrolysis of recycled maize-cob biomass waste, box-benhken process optimization and characterization studies for the thermal fast pyrolysis production of bio-energy,” Chem Eng Commun, vol. 209, no. 9, pp. 1246–1276, 2022, doi: 10.1080/00986445.2021.1957851.
B. Chávez, “Evaluación de la pirólisis rápida en reactor tipo Auger (doble tornillo sinfín) para el aprovechamiento de biomasas residuales de origen agroindustrial en el departamento Norte de Santander.,” 2023.
J. O. Ighalo et al., “Flash pyrolysis of biomass: a review of recent advances,” Clean Technol Environ Policy, 2022, doi: 10.1007/s10098-022-02339-5.
L. Kapoor, D. Bose, and A. Mekala, “Biomass pyrolysis in a twin-screw reactor to produce green fuels,” Biofuels, vol. 11, no. 1, pp. 101–107, Jan. 2020, doi: 10.1080/17597269.2017.1345360.
W. M. Lewandowski, K. Januszewicz, and W. Kosakowski, “Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type—A review,” Jun. 01, 2019, Elsevier B.V. doi: 10.1016/j.jaap.2019.03.018.
O. Sanahuja-Parejo, A. Veses, J. M. López, R. Murillo, M. S. Callén, and T. García, “Ca-based catalysts for the production of high-quality bio-oils from the catalytic co-pyrolysis of grape seeds and waste tyres,” Catalysts, vol. 9, no. 12, Jun. 2019, doi: 10.3390/catal9120992.
K. B. Park, Y. S. Jeong, B. Guzelciftci, and J. S. Kim, “Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes,” Appl Energy, vol. 259, Jun. 2020, doi: 10.1016/j.apenergy.2019.114240.
H. S. Altundoğan, M. Ş. Tanyıldızı, M. Kalender, S. Elçiçek, and D. Pehlivan, “A novel screw-type pyrolysis system for selectively producing value-added chemicals from lignocellulosic biomass,” Biomass Convers Biorefin, Jun. 2024, doi: 10.1007/s13399-024-05791-z.
F. G. Fonseca, A. Funke, A. Niebel, A. P. Soares Dias, and N. Dahmen, “Moisture content as a design and operational parameter for fast pyrolysis,” J Anal Appl Pyrolysis, vol. 139, pp. 73–86, May 2019, doi: 10.1016/j.jaap.2019.01.012.
Y. Makkawi, Y. El Sayed, D. A. Lyra, F. H. Pour, M. Khan, and M. Badrelzaman, “Assessment of the pyrolysis products from halophyte Salicornia bigelovii cultivated in a desert environment,” Fuel, vol. 290, Jun. 2021, doi: 10.1016/j.fuel.2020.119518.
M. A. H. Salgado, J. A. C. S, and L. A. C. Tarelho, “Simultaneous production of biochar and thermal energy using palm oil residual biomass as feedstock in an auto-thermal prototype reactor,” J Clean Prod, vol. 266, Jun. 2020, doi: 10.1016/j.jclepro.2020.121804.
C. Zhou et al., “Co-pyrolysis of textile dyeing sludge and red wood waste in a continuously operated auger reactor under microwave irradiation,” Energy, vol. 218, Jun. 2021, doi: 10.1016/j.energy.2020.119398.
A. Krutof and K. A. Hawboldt, “Thermodynamic model of fast pyrolysis bio-oil advanced distillation curves,” Fuel, vol. 261, Jun. 2020, doi: 10.1016/j.fuel.2019.116446.
K. B. Park, Y. S. Jeong, B. Guzelciftci, and J. S. Kim, “Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes,” Appl Energy, vol. 259, Jun. 2020, doi: 10.1016/j.apenergy.2019.114240.
L. Rodríguez-Machín et al., “The effect of citric acid pretreatment on composition and stability of bio-oil from sugar cane residues using a continuous lab-scale pyrolysis reactor,” J Anal Appl Pyrolysis, vol. 175, p. 106183, Oct. 2023, doi: 10.1016/j.jaap.2023.106183.
A. Funke, R. Grandl, M. Ernst, and N. Dahmen, “Modelling and improvement of heat transfer coefficient in auger type reactors for fast pyrolysis application,” Chemical Engineering and Processing - Process Intensification, vol. 130, pp. 67–75, Jun. 2018, doi: 10.1016/j.cep.2018.05.023.
N. S. Kamarudin et al., “Biochar: A review of its history, characteristics, factors that influence its yield, methods of production, application in wastewater treatment and recent development,” Biointerface Res Appl Chem, vol. 12, no. 6, pp. 7914–7926, Dec. 2022, doi: 10.33263/BRIAC126.79147926.
S. D. Ferreira, C. Manera, W. P. Silvestre, G. F. Pauletti, C. R. Altafini, and M. Godinho, “Use of Biochar Produced from Elephant Grass by Pyrolysis in a Screw Reactor as a Soil Amendment,” Waste Biomass Valorization, vol. 10, no. 10, pp. 3089–3100, Oct. 2019, doi: 10.1007/s12649-018-0347-1.
P. Brassard, S. Godbout, and V. Raghavan, “Pyrolysis in auger reactors for biochar and bio-oil production: A review,” Jun. 2017, Academic Press. doi: 10.1016/j.biosystemseng.2017.06.020.
N. S. A. Rasid, M. Asadullah, N. H. Malek, and N. A. S. Amin, “Fast pyrolysis of oil palm empty fruit bunch in an auger reactor: Bio-oil composition and characteristics,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2020. doi: 10.1088/1757-899X/736/3/032021.
J. Grafmüller et al., “Wood Ash as an Additive in Biomass Pyrolysis: Effects on Biochar Yield, Properties, and Agricultural Performance,” ACS Sustain Chem Eng, vol. 10, no. 8, pp. 2720–2729, Jun. 2022, doi: 10.1021/acssuschemeng.1c07694.
A. G. H. Saif, S. S. Wahid, and M. R. O. Ali, “Pyrolysis of sugarcane bagasse: The effects of process parameters on the product yields,” in Materials Science Forum, Trans Tech Publications Ltd, 2020, pp. 159–167. doi: 10.4028/www.scientific.net/MSF.1008.159.
S. M. Al-Salem, Y. Yang, J. Wang, and G. A. Leeke, “Pyro-oil and wax recovery from reclaimed plastic waste in a continuous Auger pyrolysis reactor,” Energies (Basel), vol. 13, no. 8, Apr. 2020, doi: 10.3390/en13082040.
S. Zinchik et al., “Evaluation of fast pyrolysis feedstock conversion with a mixing paddle reactor,” Fuel Processing Technology, vol. 171, pp. 124–132, Mar. 2018, doi: 10.1016/j.fuproc.2017.11.012.
M. M. Hasan, M. G. Rasul, M. I. Jahirul, and M. M. K. Khan, “Fast Pyrolysis of Municipal Green Waste in an Auger Reactor: Effects of Residence Time and Particle Size on the Yield and Characteristics of Produced Oil,” Energies (Basel), vol. 17, no. 12, p. 2914, Jun. 2024, doi: 10.3390/en17122914.
H. R. Zolfagharpour, A. Sharafati, and M. Hosseinzadeh, “Catalytic pyrolysis of sugarcane bagasse using V2O5 nanoparticles in an auger reactor,” J Anal Appl Pyrolysis, vol. 177, p. 106357, Jan. 2024, doi: 10.1016/j.jaap.2024.106357.
A. A. Papa et al., “The effect of pyrolysis temperature on the optimal conversion of residual biomass to clean syngas through fast-pyrolysis/steam gasification integration,” Int J Hydrogen Energy, Sep. 2024, doi: 10.1016/j.ijhydene.2024.09.100.
M. M. Hasan, M. G. Rasul, M. I. Jahirul, and M. M. K. Khan, “Characterization of pyrolysis oil produced from organic and plastic wastes using an auger reactor,” Energy Convers Manag, vol. 278, p. 116723, Feb. 2023, doi: 10.1016/j.enconman.2023.116723.
R. Alfonso Viltres-Rodríguez, “Caracterización química del bio-aceite de pirólisis rápida de biomasa Chemical characterization of bio-oil of the fast pyrolysis from biomass,” 2022. [Online]. Available: https://orcid.org/0000-0002-3634-5284AlejandroAlarcón-Zayas1https://orcid.org/0000-0002-3539-3938
V. Volli, A. R. K. Gollakota, and C. M. Shu, “Comparative studies on thermochemical behavior and kinetics of lignocellulosic biomass residues using TG-FTIR and Py-GC/MS,” Science of the Total Environment, vol. 792, Oct. 2021, doi: 10.1016/j.scitotenv.2021.148392.
Y. Chen, K. Liu, N. Hu, Y. Lou, F. Wang, and Y. Wang, “Biochemical composition of soil organic matter physical fractions under 32-year fertilization in Ferralic Cambisol,” Carbon Research, vol. 2, no. 1, Dec. 2023, doi: 10.1007/s44246-022-00034-0.
M. M. Hasan, M. G. Rasul, M. I. Jahirul, and M. M. K. Khan, “Fast pyrolysis of macadamia nutshell in an auger reactor: Process optimization using response surface methodology (RSM) and oil characterization,” Fuel, vol. 333, Jun. 2023, doi: 10.1016/j.fuel.2022.126490.
G. Gómez, A. Giovanny, and M. Rodriguez, “OBTENCIÓN ARTESANAL DE BIOETANOL MEDIANTE DESECHOS DE LA CÁSCARA DE PLÁTANO,” 2021.
M. A. H. Salgado, J. A. C. S, and L. A. C. Tarelho, “Simultaneous production of biochar and thermal energy using palm oil residual biomass as feedstock in an auto-thermal prototype reactor,” J Clean Prod, vol. 266, Jun. 2020, doi: 10.1016/j.jclepro.2020.121804.
X. Xu, R. Tu, Y. Sun, Z. Li, and E. Jiang, “Influence of biomass pretreatment on upgrading of bio-oil: Comparison of dry and hydrothermal torrefaction,” Bioresour Technol, vol. 262, pp. 261–270, Aug. 2018, doi: 10.1016/j.biortech.2018.04.037.