Principal component analysis applied to the statistical control of multivariate processes

Juan Carlos Herrera Vega
Fundación Universitaria Tecnológico Comfenalco
Bruno de Jesús Rahmer
Fundación Universitaria Tecnológico Comfenalco
German Herrera Vidal
Fundación Universitaria Tecnológico Comfenalco
Share:

Abstract

Objective: Propose the analysis and monitoring of a chemical process sustained in the theoretical principles of a factorial method cataloged as principal component analysis (PCA), whose ultimate objective is to represent the original variables of the system. Methodology: Methodologically the data was analyzed in a more compact dimensional space, under the hypothesis of multivariate normality. A control chart based on the error prediction squares is constructed in the later phase to monitor the behavior of the successor variables once the ACP has been applied. Results: The results of the univariate control charts constructed from the t-scores of the individual components, in which the behavior of the variables contributing to the generation of alarm signals is exhibited, can be used as the basis for an auxiliary analysis based on the results provided by the univariate control charts. Conclusion: The results obtained corroborate that the three retained components explain a majority fraction of the original variability of the data cloud and that the control chart constructed from the sub-dimensions registers the existence of outliers or extreme values.

References

  1. Y. A. Siddiqui, A. W. A. Saif, L. Cheded, M. Elshafei, A. Rahim, Integration of multivariate statistical process control and engineering process control: a novel framework. International Journal of Advanced Manufacturing Technology. 78, 259–268 (2015).
  2. J. Camacho, A. Pérez-Villegas, P. Garciá-Teodoro, G. MacIá-Fernández, PCA-based multivariate statistical network monitoring for anomaly detection. Computers and Security. 59, 118–137 (2016)
  3. Control estadístico multivariante de proceso aplicado en la industria. Cultura Científica y Tecnológica. 0 (2018).
  4. O. Gozá, M. Fernández, R. Rodríguez, E. Ojito, VacciMonitor, in press (available at https://www.redalyc.org/jatsRepo/2034/203462663003/html/index.html).
  5. J. M. Polanco Martínez, El papel del análisis por componentes principales en la evaluación de redes de control de la calidad del aire. Comunicaciones en Estadística. 9, 271 (2016).
  6. J. Rodríguez, E. Giménez, Aplicación del análisis de componentes principales en la investigación de aguas de pozo para el consumo humano. Población y Desarrollo. 23, 38–52 (2017).
  7. E. D. L. H. Domínguez, T. F. Herrera y A. Mendoza, Métodos multivariantes aplicados a la efectividad de los disolventes en la industria farmacéutica, INGE CUC, 2018. https://doi.org/10.17981/ingecuc.14.1.2018.12
  8. D. Marcondes Filho, A. M. O. Sant’Anna, Principal component regression-based control charts for monitoring count data. International Journal of Advanced Manufacturing Technology. 85, 1565–1574 (2016).
  9. J. Owen, I. Demirkiran, Principal Component Analysis : Data Reduction and Simplification. McNair Scholars Research Journal. 1, 1–23 (2014).
  10. J. Herrera Vega, G. Herrera Vidal, B. De Jesús Rahmer, in Proceedings of the International Conference on Industrial Engineering and Operations Management (IEOM Society, 2017), vol. 2017, pp. 891–904.
  11. I. T. Jollife, J. Cadima, Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374 (2016), , doi:10.1098/rsta.2015.0202.
  12. D. Montgomery. Statistical Quality Control. (2012).
  13. E. Vanhatalo, M. Kulahci, B. Bergquist, On the structure of dynamic principal component analysis used in statistical process monitoring. Chemometrics and Intelligent Laboratory Systems. 167, 1–11 (2017).
  14. B. De Ketelaere, M. Hubert, E. Schmitt, Overview of PCA-based statistical process-monitoring methods for time-dependent, high-dimensional data. Journal of Quality Technology. 47 (2015), pp. 318–335.
  15. K. A. Severson, M. C. Molaro, R. D. Braatz, Principal component analysis of process datasets with missing values. Processes. 5 (2017), doi:10.3390/pr5030038.
  16. C. Pérez, Técnicas de análisis multivariante de datos (2004; http://bit.ly/1JzSD8y).
  17. M. B. Quaglino, M. S. Vitelleschi, Comparación de Métodos para el Tratamiento de Información Faltante en un Análisis de Componentes Principales sobre Datos Biológicos. FABICIB. 13, 115–124 (2009).
  18. J. Camacho, A. Ferrer, Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical aspects. Chemometrics and Intelligent Laboratory Systems. 131, 37–50 (2014)
  19. C. T. Dos Santos Dias, W. J. Krzanowski, Choosing components in the additive main effect and multiplicative interaction (AMMI) models. Scientia Agricola. 63, 169–175 (2006).
  20. Bógalo Román J. Componentes subyacentes comunes en series temporales. 2012. Obtenido de http://espacio.uned.es/fez/eserv/bibliuned:masterMatavanz-Jvbogalo/Documento.pdf.
  21. E. Lazzarotto, L. M. Gramani, A. C. Neto, L. A. Teixeira Junior, PRINCIPAL COMPONENTS IN MULTIVARIATE CONTROL CHARTS APPLIED TO DATA INSTRUMENTATION OF DAMS. Independent Journal of Management & Production. 7 (2016), doi:10.14807/ijmp.v7i1.369.
  22. P. Phaladiganon, S. B. Kim, V. C. P. Chen, W. Jiang, Principal component analysis-based control charts for multivariate nonnormal distributions. Expert Systems with Applications. 40, 3044–3054 (2013).
  23. D. Slišković, R. Grbić, Ž. Hocenski, Multivariate statistical process monitoring. Tehnicki Vjesnik-Technical Gazette. 19, 33–41 (2012).
  24. F. S. L. Costa, R. H. P. Pedroza, D. L. Porto, M. V. P. Amorimb, K. M. G. Lima, Multivariate control charts for simultaneous quality monitoring of isoniazid and rifampicin in a pharmaceutical formulation using a portable near infrared spectrometer. Journal of the Brazilian Chemical Society. 26, 64–73 (2015).
  25. M. Zude, Optical monitoring of fresh and processed agricultural crops (CRC Press, 2008)
How to Cite
[1]
J. carlos Herrera Vega, B. de Jesús Rahmer, and G. Herrera Vidal, “Principal component analysis applied to the statistical control of multivariate processes”, Investigación e Innovación en Ingenierías, vol. 10, no. 1, pp. 17–29, Feb. 2022.

Send mail to Author


Send Cancel

Custom technologies based on your needs

  • MongoDB
  • ElasticSearch
  • Redis
  • Solr
  • Memcached