Energy evaluation of the formation of biogas obtained from solid urban waste from the sanitary landfill using the LandGEM model
Copyright (c) 2023 Investigación e Innovación en Ingenierías
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Articles
- Submited: February 7, 2023
-
Published: July 31, 2023
Abstract
Objective: Estimate the energy available for electricity production from biogas obtained from landfill waste using the LandGEM model adapted to the local conditions of Monteria, Colombia. Methodology: For this purpose, information on the loma grande landfill located in the city of Monteria, waste volumes, climate, and waste composition from 2016 to 2028, obtained through databases and other studies, was used to apply the LandGEM model to power generation in biogas composition. Results: it was observed that only for the year 2022 the amount of methane calculated is 9,984,000 m3/year and with this the total estimated energy is 268,4968 MWh, which could supply the requirements of the Loma grande sanitary landfill. Conclusion: The study predicts that these assessment models can be used to plan landfill gas energy production, and thus, take advantage of unproductive land ownership that would normally be used as a landfill and that was previously created for non-destructive polluting materials.
References
- F. Andrés, A. Juan, J. Juan, and del C. María, “Análisis del biogás captado en un relleno sanitario como combustible primario para la generación de energía eléctrica,” Sci. Tech., vol. XVII, pp. 23–28, 2011, [Online]. Available: https://www.redalyc.org/articulo.oa?id=84921327006.
- Organizacion de las naciones Unidas - Medio Ambiente (ONU Medio Ambiente), Perspectiva de la Gestión de Residuos en América Latina y el Caribe Perspectiva de la Gestión de Residuos en América Latina y el Caribe. 2018.
- FAO, MINENERGIA, PNUD, and GEF, “Manual del Biogás,” Proy. CHI/00/G32, p. 120, 2011, [Online]. Available: http://www.fao.org/docrep/019/as400s/as400s.pdf.
- I. Márquez, “Disposición Final de Residuos Sólidos,” Supt. Serv. Públicos Domic., vol. 2215, p. 97, 2019.
- T. E. Pilar, E. M. Arce, D. Daza, M. S. Faure, and H. Terraza, “Evaluation on urban solid waste management in latin america and the caribbean - 2010 report,” Inter-American Dev. Bank, vol. 4, no. 1, pp. 88–100, 2557.
- Fabiana Meijon Fadul, “Estudios para la revisión del POT Monteria-Córdoba,” 2019.
- K. M. Noguera and J. T. Olivero, “Los rellenos sanitarios en Latinoamérica: Caso Colombiano,” Rev. Acad. Colomb. Cienc, vol. 34, no. 132, pp. 347–356, 2010.
- M. de A. vivienda y desarrollo territorial Instituto de Hidrología, Meteorología y Estudios Ambientales -IDEAM-, Programa de las Naciones Unidas para el Desarrollo -PNUD-, “Módulo de residuos,” Inventar. Nac. Fuentes y Sumideros Gases Ef. Invernadero 2000-2004, pp. 295–320, 2009.
- C. G. B. PEREZ, “Biogás: una alternativa energética para los rellenos sanitarios urbanos y un beneficio mitigador de cambio climático,” Univ. Mil. NUEVA GRANADA, vol. 7, no. 6, p. 14, 2016, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/26849997%0Ahttp://doi.wiley.com/10.1111/jne.12374.
- Y. A. Çengel and M. A. Boles, Thermodynamics : an engineering approach. Sixth edition. Boston : McGraw-Hill Higher Education, [2008] ©2008, 2008.
- M. Markets, “La importancia del metano y las actividades de reducción de sus emisiones,” Methane to Mark., pp. 1–2, 2015, [Online]. Available: https://www.globalmethane.org/documents/methane_fs_spa.pdf.
- V. Novotny, “From biogas-to hydrogen – Based integrated urban water, energy and waste solids system - Quest towards decarbonization,” Int. J. Hydrogen Energy, vol. 47, no. 19, pp. 10508–10530, 2022, doi: https://doi.org/10.1016/j.ijhydene.2022.01.085.
- J. Luís Padilha and A. Luiz Amarante Mesquita, “Waste-to-energy effect in municipal solid waste treatment for small cities in Brazil,” Energy Convers. Manag., vol. 265, p. 115743, 2022, doi: https://doi.org/10.1016/j.enconman.2022.115743.
- T. Moutushi, S. S. Tupsakhare, and M. J. Castaldi, “Abiotic decomposition of municipal solid waste under elevated temperature landfill conditions,” Sci. Total Environ., vol. 823, p. 153685, 2022, doi: https://doi.org/10.1016/j.scitotenv.2022.153685.
- M. Regis, “Humans, not machines, create meaning: an interview of Miguel Benasayag by Regis Meyran,” UNESCO Cour., vol. 3, no. September, pp. 15–17, 2018.
- L. Andeobu, S. Wibowo, and S. Grandhi, “Artificial intelligence applications for sustainable solid waste management practices in Australia: A systematic review.,” Sci. Total Environ., vol. 834, p. 155389, Aug. 2022, doi: 10.1016/j.scitotenv.2022.155389.
- T. R. Ayodele, A. S. O. Ogunjuyigbe, and M. A. Alao, “Economic and environmental assessment of electricity generation using biogas from organic fraction of municipal solid waste for the city of Ibadan, Nigeria,” J. Clean. Prod., vol. 203, pp. 718–735, 2018, doi: https://doi.org/10.1016/j.jclepro.2018.08.282.
- D. Cudjoe, M. S. Han, and A. P. Nandiwardhana, “Electricity generation using biogas from organic fraction of municipal solid waste generated in provinces of China: Techno-economic and environmental impact analysis,” Fuel Process. Technol., vol. 203, p. 106381, 2020, doi: https://doi.org/10.1016/j.fuproc.2020.106381.
- A. Alexander, C. Burklin, and A. Singleton, “Landfill gas emissions model. United States Environmental Protection Agency, Version 3.02 user’s guide.,” U.S. Environ. Prot. Agency Off. Res. Dev., no. May, p. 48, 2005, [Online]. Available: http://www3.epa.gov/ttncatc1/dir1/landgem-v302-guide.pdf.
- A. Andrade, J. E. Tibaquirá, and A. Restrepo, “Estimación de biogás de relleno sanitario, caso de estudio: Colombia,” Entre Cienc. e Ing., vol. 12, no. 23, p. 40, 2018, doi: 10.31908/19098367.3701.
- S. Garcia-Freites, A. Welfle, A. Lea-Langton, P. Gilbert, and P. Thornley, “The potential of coffee stems gasification to provide bioenergy for coffee farms: a case study in the Colombian coffee sector,” Biomass Convers. Biorefinery, vol. 10, no. 4, pp. 1137–1152, 2020, doi: 10.1007/s13399-019-00480-8.
- A. de Montería, “Actualización del plan de gestión integral de residuos sólidos (PGIRS) del municipio de montería dando cumplimiento a la resolución 0754 del 25 de noviembre del 2014,” 2017.
- D. D. López Juvinao, L. M. . Torres Ustate, y F. O. Moya Camacho, "Tecnologías, procesos y problemática ambiental en la Minería de arcilla", Investigación e Innovación en Ingenierías, vol. 8, n.º 2, pp. 20–43, 2020. DOI: https://doi.org/10.17081/invinno.8.2.385