Autonomous navigation and indoor mapping for a service robot

Jovani Jimenez Builes
Universidad Nacional de Colombia, Colombia
Gustavo Acosta Amaya
Politécnico Colombiano Jaime Isaza Cadavid, Colombia
Julián López Velásquez
Politécnico Colombiano Jaime Isaza Cadavid, Colombia
Share:

Abstract

Objective: Teach the operation of the Summit platform and the Powerball robot manipulator. Simultaneous Localization and Mapping (SLAM) is a quite common and interesting problem in mobile robotics. It is the basis of safe autonomous navigation of mobile robots and the entrance to new combined applications with a manipulator for instance. Methodology: In order to find a solution to the SLAM problem, the ROS middleware and the MRPT were selected. Autonomous navigation was tested using two methods, the MRPT navigation ROS package, which is a reactive navigation method based on Trajectory Parameter Space (TP-Space) transformations, and the ROS navigation stack, a standard for differential drive and holonomic wheeled robots. Results: To validate the advantages and disadvantages of both approaches, a mobile robot with strong kinematic constraints (Ackermann-steering-type) known as Summit was used. As an additional work, an application using the mobile robot Summit and a robotic manipulator (Powerball) was carried out, with the intention of picking and placing objects of the mobile robot, a widely spread application among service robotics, especially, in the area of industrial logistics. Conclusions: Finally, it is concluded that with the tests carried out with the robot, it was possible to demonstrate autonomous navigation, using the two
mentioned methods.

References

  1. R. Megalingam, V. Naick, M. Motheram, J. Yannam, N. Gutlapalli & V. Sivanantham. "Robot operating system based autonomous navigation platform with human robot interaction". Telkomnika (Telecommunication Computing Electronics and Control), 21 (3), pp. 675 - 683, 2023. DOI: 10.12928/TELKOMNIKA.v21i3.24257.
  2. O. Chi, C. Chi, D. Gursoy & R. Nunkoo. "Customers’ acceptance of artificially intelligent service robots: The influence of trust and culture". International Journal of Information Management, 70, 2023. DOI: 10.1016/j.ijinfomgt.2023.102623.
  3. R. Megalingam, B. Tanmayi, G. Reddy, I. Krishna, G. Sree & S. Pai. "ROS-based GUI controlled robot for indoor mapping and navigation". Lecture Notes on Data Engineering and Communications Technologies, 58, pp. 283 - 294, 2021. DOI: 10.1007/978-981-15-9647-6_22.
  4. H. Durrant-Whyte & T. Bailey “Simultaneous localization and mapping (SLAM): Part I the essential algorithms”. IEEE Robotics Automation Magazine, 13(2):99110, 2006. DOI: 10.1109/MRA.2006.1638022.
  5. O. Hamzeh & A. Elnagar. “Localization and navigation of autonomous indoor mobile robots”. International Journal of Computing, Communications & Instrumentation Engg., vol. 2, pp. 228-233, 2015.
  6. N. Mohan, T. Shreekanth & B. Sandeep “Autonomous robot based on robot operating system (ROS) for mapping and navigation”. International Journal of Computer Science & Engineering Technology, vol. 6(7), pp. 449-457, 2015.
  7. S. Zaman, W. Slany & G. Steinbauer “ROS-based mapping, localization and autonomous navigation using a pioneer 3-DX robot and their relevant issues”. In: Saudi International Electronics, Communications and Photonics Conference (SIECPC), pp. 15, 2011. DOI: 10.1109/SIECPC.2011.5876943.
  8. E. Rodríguez. “Navegación autónoma de un robot móvil Summit”. Doctoral thesis. Universidad de Almería, España, 2015.
  9. J. Blanco. “Mobile Robot Programming Toolkit (MRPT)”. [Online]. Available: https://w3.ual.es/~jlblanco/software/ [Last access: 03 May 2023].
  10. A. Moniz & B. Krings Robots working with humans or humans working with robots? Searching for social dimensions in new human robot interaction in industry societies. Societies, vol. 6(3), pp. 123, 2016. DOI: 10.3390/soc6030023.
  11. H. Rasheed, Y. He, H. Khizar & H. Abbas. "Exploring consumer-robot interaction in the hospitality sector: Unpacking the reasons for adoption (or resistance) to artificial intelligence". Technological Forecasting and Social Change, 192, 2023. DOI: 10.1016/j.techfore.2023.122555
  12. G. Schunk. “Assembly and Operating Manual LWA 4P”. Schunk GmbH & Co. KG. Assembly and Operating Manual LWA 4P. [Online]. Available: https://schunk.com [Last access: 3 May 2023].
  13. T. Itsuka, M. Song, A. Kawamura & R. Kurazume “Development of ROS2-TMS: New software platform for informationally structured environment”. ROBOMECH Journal, 9(1), 2022. DOI: 10.1186/s40648-021-00216-2.
  14. H. Zhang, L. Yu & S. Fei. “Design of dual-LiDAR high precision natural navigation system”. IEEE Sensors Journal, 22(7), pp. 7231-7239, 2022. DOI: 10.1109/JSEN.2022.3153900.
  15. L. Contreras, T. Yamamoto, Y. Matsusaka & H. Okada “Towards general purpose service robots: World Robot Summit–Partner Robot Challenge”. Advanced Robotics, 2022. DOI: 10.1080/01691864.2022.2109428.
  16. Z. Wang, J. Peng, M. Dong, S. Song, S. Ding & Y. Liu. “Novel trajectory planning method based on double quaternion and Tau theory”. Lecture Notes in Electrical Engineering, pp. 482-491, 2022. DOI: 10.1007/978-981-16-6372-7_54.
  17. V. Raja, D. Talwar, A. Manchikanti & S. Jha. “Autonomous navigation for mobile robots with sensor fusion technology”. Lecture Notes in Mechanical Engineering, pp. 13-23, 2023. DOI: 10.1007/978-981-19-0561-2_2.
  18. N. Baslan, S. Heerklotz, S. Weber, A. Heerklotz, B. Hofig & J. Abu-Khalaf. “Navigation and vision system of a mobile robot”. In: Proceedings of the 19th International Conference on Research and Education in Mechatronics, Nro. 8421777, pp. 99-104, 2018. DOI:
  19. 1109/REM.2018.8421777.
  20. J. Blanco, J. González & J. Fernández. “Extending obstacle avoidance methods through multiple parameter-space transformations”. Autonomous Robots, vol. 24, pp. 2948, 2008. DOI: 10.1007/s10514-007-9062-7.
  21. H. Cheon, T. Kim, B. Kim, J. Moon & H. Kim. "Online waypoint path refinement for mobile robots using spatial definition and classification based on collision probability". IEEE Transactions on Industrial Electronics, 70 (7), pp. 7004 - 7013, 2023. DOI: 10.1109/TIE.2022.3203684.
  22. F. Dellaert, D. Fox, W. Burgard & S. Thrun. “Monte Carlo localization for mobile robots”. In: Proceedings - IEEE International Conference on Robotics and Automation, vol. 2, pp. 1322-1328, 1999. DOI: 10.1109/ROBOT.1999.772544.
  23. D. Coleman, I. Sucan, S. Chitta & N. Correll. “Reducing the barrier to entry of complex robotic software: A MoveIt! case study”. Journal of Software Engineering for Robotics, vol. 1(1), 2014.
  24. L. Yin, J. Liu, F. Zhou, M. Gao & M. Li. "Cost-based hierarchy genetic algorithm for service scheduling in robot cloud platform". Journal of Cloud Computing, 12 (1), Nro. 35, 2023. DOI: 10.1186/s13677-023-00395-w.
  25. L. Joseph. “Mastering ROS for robotics programming”. Second edition. Packt Publishing Ltd., USA, 2015.
  26. OMPL “The open motion planning library”. Technical report. Kavraki Lab, Department of Computer Science. [Online]. Available: https://ompl.kavrakilab.org/ [Last access: 03 May 2023].
  27. Movelt "Concepts". Technical report. PickNik Robotics. [Online]. Available: https://moveit.ros.org/documentation/concepts/ [Last access: 03 May 2023].
  28. R. Smits. “KDL: Kinematics and dynamics library”. Technical report. Orocos Kinematics and Dynamics. [Online]. Available: http://www.orocos.org/kdl [Last access: 03 May 2023].
  29. J. Pan, S. Chitta & D. Manocha. "FCL: A general purpose library for collision and proximity queries," 2012 IEEE International Conference on Robotics and Automation, Saint Paul, USA, pp. 3859-3866, 2012, DOI: 10.1109/ICRA.2012.6225337.
  30. J. Martínez Garcés y J. Barreto Fereira, “Modelo de planeación para la inversión tecnológica en centros de investigación universitarios”, Investigación e Innovación en Ingenierías, vol. 7, n.º 2, jul. 2019. DOI:10.17081/invinno.7.2.3448
  31. D. Fox. “KLD-sampling: Adaptive particle filters”. Advances in Neural Information Processing Systems, pp. 713-720, 2001.
How to Cite
[1]
J. Jimenez Builes, G. Acosta Amaya, and J. López Velásquez, “Autonomous navigation and indoor mapping for a service robot”, Investigación e Innovación en Ingenierías, vol. 11, no. 2, pp. 28–38, Sep. 2023.

Send mail to Author


Send Cancel

Custom technologies based on your needs

  • MongoDB
  • ElasticSearch
  • Redis
  • Solr
  • Memcached