Experimental coverage prediction in an LTE network using machine learning algorithms

Share:

Abstract

Objective: Experimentally predict the coverage of a Long Term Evolution (LTE) network using machine learning algorithms. Methodology: The research is descriptive through the analysis of the causes and factors that influence the variables, according to the quasi-experimental method through power measurements under controlled field conditions. The study of the physical variables that determine the coverage in the provision of a mobile network service is carried out by tracing four routes; the data is evaluated, pre-processed and filtered to test it using classical mathematical models, then statistical prediction methods are applied, as well as prediction algorithms with the help of machine learning (ML) to generate models that categorize the use of each cell within the grouping, among the methods to use are: descriptive statistics, Random Forest (RD), density quantification, Isolation Forest (IF) and Multivariable Outliers (MO). Subsequently, cross-validation and prediction of cell usage are performed. Results: With the values obtained, the correlation between the behavior of the power and distance parameters is established, and with the optimal coverage variables it is compared with the traditional models for a studied cell. Conclusions: The process of integrating mathematical and computational techniques facilitates the decision making of radio engineers in the diagnosis, management, planning and resizing of LTE networks under conditions where networks become much more heterogeneous and mobile services require of more technological infrastructure resources.

References

  1. A. Kulkarni, A. Seetharam, A. Ramesh, and J. D. Herath, “DeepChannel: Wireless channel quality prediction using deep learning,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 443–456, 2020, doi: 10.1109/TVT.2019.2949954.
  2. I.-R. Recommandation P-1411-9, Datos de propagación y métodos de predicción para la planificación de sistemas de radiocomunicaciones en interiores y redes radioeléctricas de área local en la gama de frecuencias de 900 MHz a 100 GHz Serie P, vol. 7. 2017.
  3. I. M. M Mohamed, “Accurate Path-Loss Estimation for Wireless Cellular Networks,” J. Kejuruter., vol. 33, no. 2, pp. 317–328, 2021, doi: 10.17576/jkukm-2021-33(2)-16.
  4. Q. He, A. Moayyedi, G. Dan, G. P. Koudouridis, and P. Tengkvist, “A Meta-Learning Scheme for Adaptive Short-Term Network Traffic Prediction,” IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2271–2283, 2020, doi: 10.1109/JSAC.2020.3000408.
  5. S. Bi, J. Lyu, Z. Ding, and R. Zhang, “Engineering radio maps for wireless resource management,” IEEE Wirel. Commun., vol. 26, no. 2, pp. 133–141, 2019, doi: 10.1109/MWC.2019.1800146.
  6. T. S. Rappaport and S. Sandhu, “Radio wave propagation for emerging wireless personal communication systems,” in Wireless Personal Communications, Springer, 2002, pp. 1–27.
  7. Z. Chen and Y. Zhang, “Distributed spectrum monitoring system based on RSSI optimization algorithm,” Prog. Electromagn. Res. Symp., vol. 2017-Novem, pp. 2350–2355, 2017, doi: 10.1109/PIERS-FALL.2017.8293529.
  8. M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial,” IEEE Commun. Surv. Tutorials, vol. 21, no. 4, pp. 3039–3071, 2019, doi: 10.1109/COMST.2019.2926625.
  9. P. Campos, Á. Hernández-Solana, and A. Valdovinos-Bardají, “Machine Learning for Hidden Nodes Detection in Unlicensed LTE Networks,” Comput. Networks, vol. 208, no. February, 2022, doi: 10.1016/j.comnet.2022.108862.
  10. O. O. Erunkulu, A. M. Zungeru, C. K. Lebekwe, and J. M. Chuma, “Cellular Communications Coverage Prediction Techniques: A Survey and Comparison,” IEEE Access, vol. 8, pp. 113052–113077, 2020, doi: 10.1109/ACCESS.2020.3003247.
  11. M. D. Yacoub, Foundations of Mobile Radio Engineering. 2019.
  12. Y. Zhang, J. Wen, G. Yang, Z. He, and J. Wang, “Path loss prediction based on machine learning: Principle, method, and data expansion,” Appl. Sci., vol. 9, no. 9, 2019, doi: 10.3390/app9091908.
  13. H. S. Jo, C. Park, E. Lee, H. K. Choi, and J. Park, “Path loss prediction based on machine learning techniques: Principal component analysis, artificial neural network and gaussian process,” Sensors (Switzerland), vol. 20, no. 7, 2020, doi: 10.3390/s20071927.
  14. C. E. G. Moreta, M. R. C. Acosta, and I. Koo, “Prediction of digital terrestrial television coverage using machine learning regression,” IEEE Trans. Broadcast., vol. 65, no. 4, pp. 702–712, 2019, doi: 10.1109/TBC.2019.2901409.
  15. H. Elsherbiny, H. M. Abbas, H. Abou-Zeid, H. S. Hassanein, and A. Noureldin, “4G LTE Network Throughput Modelling and Prediction,” 2020 IEEE Glob. Commun. Conf. GLOBECOM 2020 - Proc., pp. 3–8, 2020, doi: 10.1109/GLOBECOM42002.2020.9322410.
  16. J. Isabona et al., “Development of a Multilayer Perception Neural Network for Optimal Predictive Modeling in Urban Microcellular Radio Environments,” Appl. Sci., vol. 12, no. 11, 2022, doi: 10.3390/app12115713.
  17. C. Gijón, M. Toril, S. Luna-Ramírez, M. L. Marí-Altozano, and J. M. Ruiz-Avilés, “Long-term data traffic forecasting for network dimensioning in lte with short time series,” Electron., vol. 10, no. 10, 2021, doi: 10.3390/electronics10101151.
  18. J. Riihijarvi and P. Mahonen, “Machine Learning for Performance Prediction in Mobile Cellular Networks,” IEEE Comput. Intell. Mag., vol. 13, no. 1, pp. 51–60, 2018, doi: 10.1109/MCI.2017.2773824.
  19. N. Moraitis, L. Tsipi, and D. Vouyioukas, “Machine learning-based methods for path loss prediction in urban environment for LTE networks,” Int. Conf. Wirel. Mob. Comput. Netw. Commun., vol. 2020-Octob, 2020, doi: 10.1109/WiMob50308.2020.9253369.
  20. R. Bureau, “HANDBOOK Spectrum Monitoring,” Int. Telecommun. Union, p. 168, 2011.
  21. Francois Rancy, “Handbook on national spectrum management,” Itu-R, pp. 1–326, 2015.
  22. B. Charbuty and A. Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine Learning,” J. Appl. Sci. Technol. Trends, vol. 2, no. 01, pp. 20–28, 2021, doi: 10.38094/jastt20165.
  23. L. Alho, A. Burian, J. Helenius, and J. Pajarinen, “Machine learning based mobile network throughput classification,” IEEE Wirel. Commun. Netw. Conf. WCNC, vol. 2021-March, 2021, doi: 10.1109/WCNC49053.2021.9417365.
  24. L. Huang, L. Lu, and W. Hua, “A survey on next-cell prediction in cellular networks: Schemes and applications,” IEEE Access, vol. 8, pp. 201468–201485, 2020, doi: 10.1109/ACCESS.2020.3036070.
  25. Unión Internacional de Telecomunicaciones, “Recomendación UIT-R P.1411-7,” Recom. UIT-R P.1411-7, vol. 1, pp. 1–39, 2013, [Online]. Available: https://www.itu.int/.
  26. J. Herrera, “Metodología de medición del espectro con técnicas experimentales para obtener modelos de propagación,” vol. 1, p. 165, 2021, [Online]. Available: https://www.unipamplona.edu.co/unipamplona/portalIG/home_10/recursos/2015_s1/pag_contenido/02032015/libros_2015.jsp.
  27. A. Bhuvaneshwari, R. Hemalatha, and T. Satyasavithri, “Semi Deterministic Hybrid Model for Path Loss Prediction Improvement,” Procedia Comput. Sci., vol. 92, pp. 336–344, 2016, doi: 10.1016/j.procs.2016.07.388.
  28. N. Heydarishahreza and N. Ansari, “Mobile Node Localization in Wireless Networks: Path-Loss Model, Trilateration, and Error Mitigation in a 5G Sub-6 GHz Scenario,” J. Netw. Netw. Appl., vol. 3, no. 3, pp. 129–136, 2023, doi: 10.33969/j-nana.2023.030304.
  29. M. Bouzidi, M. Mohamed, Y. Dalveren, A. Moldsvor, F. A. Cheikh, and M. Derawi, “Propagation Measurements for IQRF Network in an Urban Environment,” Sensors, vol. 22, no. 18, pp. 1–21, 2022, doi: 10.3390/s22187012.
  30. S. Kumar, P., Patil, B., & Ram, “Selection of Radio Propagation Model for Long Term Evolution ( LTE ) Network,” Int. J. Eng. Res. Gen. Sci., vol. 3, no. 1, pp. 373–379, 2015, Accessed: Jul. 15, 2018. [Online]. Available: www.ijergs.org.
  31. G. L. Stüber, Principles of mobile communication: Fourth edition. 2017.
  32. A. L. Imoize and T. E. Ogunfuwa, “Propagation Measurements of a 4G LTE Network in Lagoon Environment,” Niger. J. Technol. Dev., vol. 16, no. 1, pp. 1–9, 2019, doi: 10.4314/njtd.v16i1.1.
  33. S. Saunders and A. Aragon, Antennas and propagation for wireless communications systems. England, 2018.
  34. B. Golman, “A set of Jupyter notebooks for the analysis of transport phenomena and reaction in porous catalyst pellet,” Comput. Appl. Eng. Educ., vol. 27, no. 3, pp. 531–542, 2019, doi: 10.1002/cae.22095.
  35. I. Pintye, E. Kail, P. Kacsuk, and R. Lovas, “Big data and machine learning framework for clouds and its usage for text classification,” Concurr. Comput. Pract. Exp., vol. 33, no. 19, pp. 1–14, 2021, doi: 10.1002/cpe.6164.
  36. Z. Wang, Z. Su, Y. Deng, J. Kurths, and J. Wu, “Spatial network disintegration based on kernel density estimation,” Reliab. Eng. Syst. Saf., vol. 245, no. August 2023, p. 110005, 2024, doi: 10.1016/j.ress.2024.110005.
  37. G. K. Vishwakarma, C. Paul, and A. M. Elsawah, “An algorithm for outlier detection in a time series model using backpropagation neural network,” J. King Saud Univ. - Sci., vol. 32, no. 8, pp. 3328–3336, 2020, doi: 10.1016/j.jksus.2020.09.018.
  38. Y. Pu, W. Yao, X. Li, and A. Alhudhaif, “An adaptive highly improving the accuracy of clustering algorithm based on kernel density estimation,” Inf. Sci. (Ny)., vol. 663, no. August 2023, p. 120187, 2024, doi: 10.1016/j.ins.2024.120187.
  39. O. Lifandali, N. Abghour, and Z. Chiba, “Feature Selection Using a Combination of Ant Colony Optimization and Random Forest Algorithms Applied to Isolation Forest Based Intrusion Detection System,” Procedia Comput. Sci., vol. 220, pp. 796–805, 2023, doi: 10.1016/j.procs.2023.03.106.
  40. Ł. Gałka and P. Karczmarek, “Deterministic attribute selection for isolation forest,” Pattern Recognit., vol. 151, no. March, 2024, doi: 10.1016/j.patcog.2024.110395.
  41. A. Al-Thaedan et al., “Downlink throughput prediction using machine learning models on 4G-LTE networks,” Int. J. Inf. Technol., vol. 15, no. 6, pp. 2987–2993, 2023, doi: 10.1007/s41870-023-01358-9.
  42. M. Mayrhofer and P. Filzmoser, “Multivariate outlier explanations using Shapley values and Mahalanobis distances,” Econom. Stat., no. xxxx, 2023, doi: 10.1016/j.ecosta.2023.04.003.
  43. A. Nowak-Brzezinska and C. Horyn, “Outliers in rules - The comparision of LOF, COF and KMEANS algorithms.,” Procedia Comput. Sci., vol. 176, pp. 1420–1429, 2020, doi: 10.1016/j.procs.2020.09.152.
  44. D. Zou et al., “Outlier detection and data filling based on KNN and LOF for power transformer operation data classification,” Energy Reports, vol. 9, pp. 698–711, 2023, doi: 10.1016/j.egyr.2023.04.094.
How to Cite
[1]
J. E. Herrera Rubio, G. A. Portilla González, and A. M. Osorio Velazco, “Experimental coverage prediction in an LTE network using machine learning algorithms”, Investigación e Innovación en Ingenierías, vol. 12, no. 2, Nov. 2024.

Send mail to Author


Send Cancel

Custom technologies based on your needs

  • MongoDB
  • ElasticSearch
  • Redis
  • Solr
  • Memcached