Biochips, aplicaciones convencionales e innovación: Una revisión documental

Contenido principal de artículos

William Fernando Rodríguez Sarmiento
Juan Sebastián Vargas Vélez

Palabras clave

Biochips, optimización, algoritmos, herramientas, aplicaciones médicas, biomedicina


Objetivo: Analizar las tendencias de la aplicación convencional de los biochips, para lo cual se realizó una revisión documental en torno a las tendencias en la creación de biochips a partir de una búsqueda y análisis de los trabajos publicados desde el año 2012 hasta el 2017 en la base de datos de la National Center for Biotechnology Information (NCBI). Resultados: Se encontró que las tendencias en la creación de biochips se han configurado como una innovación relativamente nueva en el campo de la Ingeniería Bioinformática aplicada en otras áreas, y en particular la medicina, para el tratamiento y diagnóstico de enfermedades como el cáncer. Asimismo, se encontró que desde la química y la genética se han desarrollado materiales para la fabricación de los biochips, haciéndolos biocompatibles para el organismo humano. Conclusiones: El desarrollo de nuevas tecnologías, usando biochips para la detección y monitoreo de enfermedades, permite la creación de tratamientos más efectivos y puntuales en pro de la salud y la calidad de vida. Así se evitan, además, complicaciones futuras de los pacientes, dado que su implementación sugiere una técnica menos traumática e invasiva.

Abstract 68 | PDF Downloads 74 HTML Downloads 7


1. S. Shukla, A. Kumar, A. Lakhmani. “Microchips: A leading innovation in medicine”, 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 2016

2. V. Templier, T. Livache, S. Boisset, M. Maurin, S.Slimani, R. Mathey., y . Roupioz, "Biochips for Direct Detection and Identification of Bacteria in Blood Culture-Like Conditions, Scientific Reports", Scientific Reports, vol. 7, 2017.

3. B. Nunna, D. Mandal, S. Zhuang, E. Soo Lee, "A standalone micro biochip to monitor the cancer progression by measuring cancer antigens as a point-of-care (POC) device for enhanced cancer management", Healthcare Innovations and Point of Care Technologies (HI-POCT), USA. 2017

4. B. Santamaría, M.F. Laguna, D. López-Romero, A.L. Hernandez, F.J. Sanza, Á. Lavín, R. Casquel, M.V. Maigler, R.L. Espinosa., and M. Holgado, "Development towards Compact Nitrocellulose-Based Interferometric Biochips for Dry Eye MMP9 Label-Free In-Situ Diagnosis", Sensors (BASEL), vol. 17, no. 5, 2017.

5. D. Vignesh., y S. Malarvizhi, "Improvement in Biochip Plattform using Multicore Structure", IEEE Xplore, 2016.

6. LH. Pan, ST. Pang, PY. Fang, CK. Chuang, HW. Yang, "Label-Free Biochips for Accurate Detection of Prostate Cancer in the Clinic: Dual Biomarkers and Circulating Tumor Cells", Theranostics, 2017.

7. S. Poonam., y S. Preeta, "An Analysis and Design of Photonic Crystal-Based Biochip for Detection of Glycosuria", IEEE Sensors Journal, 2015.

8. C. Kuo, G. Lu, Tsung-Yi, H. ChenHo, S. Hu, "Placement Optimization of CyberPhysical Digital Microfluidic Biochips", Biomedical Circuits and Systems Conference (BioCAS), Shangai, 2016

9. L. Umar, R. Nanda Setiadi, Y. Hamzah., T.M. Linda, "Biosensor Based on BiochipG for dissolved oxygen detection from photosynthesis process of Greem Algae Chlorella Vulgaris", International Conference on Smart Cities, Automation & Intelligent Computing Systems, Yogyakarta, Indonesia, 2017.

10. S. Wang., y G. Elliott, "Synergistic Development of Biochips and Cell Preservation Methodologies: A Tale of Converging Technologies", Springer, 2017.

11. T. Y. Ho, W. Grover, S. Hu and K. Chakrabarty, "Cyber-physical integration in programmable microfluidic biochips", 2015 33rd IEEE International Conference on Computer Design (ICCD), New York, NY, 2015

12. A. Tripathi, J. Riddell, y N. Chronis, "A Biochip with a 3D microfluidic architecture for trapping white blood cells", Sens Actuators B Chem", vol. 186, pp. 244–251, 2013.

13. K. O'Neal, D. Grissom and P. Brisk, "Force-Directed List Scheduling for Digital Microfluidic Biochips", 2012 IEEE/IFIP 20th International Conference on VLSI and System-on-Chip (VLSI-SoC), Santa Cruz, CA, USA, 2012

14. M. Veitinger, R. Oehler, E. Umlauf, R. Baumgartner, G. Schmidt, C. Gerner, et al., "A platelet protein biochip rapidly detects an Alzheimer’s disease-specific phenotype", Acta Neuropathol, vol. 128, no. 5, pp. 665-77, 2014.

15. F.J. Xu, D. Wu., y K. Sugioka, "Ultrafast Laser Fabrication of Functional Biochips: New Avenues for Exploring 3D Micro- and Nano-Environments", Micromachines, vol. 8, no. 2, 2017

16. L. Zhu, G. Jiang, S. Wang, C. Wang, Q. Li y H. Yu, "Biochip system for rapid and accurate identification of mycobacterial species from isolates and sputum", Journal of Clinical Microbiology, vol. 48, no. 10, 2010.

17. O. Kim, D. Lee, A. C. Lee and S. Kwon, "High sensitivity rare cell capturing biochip with separable microstructures," 2015 IEEE SENSORS, Busan, 2015

18. H. Zarian, A. Saponeri, A. Michelotto, E. Zattra, A. Belloni-Fortina, M. Alaibac, Biochip technology for the serological diagnosis of bullous pemphigoid, ISRN Dermatology, 2012.

19. S. Ghosh, H. Rahaman and C. Giri, "Optimized Concurrent Testing of Digital Microfluidic Biochips," 2018 31st International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems (VLSID), Pune, 2018

20. L. Wang, Q. Zheng, Q. An zhang, H. Xu, J. Tong,1 Ch. Zhu,1 and Y. Wan, "Detection of single tumor cell resistance with aptamer biochip", Oncology Letters, vol. 4, no. 5, pp.935–940

21. Y. Dae, Seo Tae and S. Dong, "Fabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting", vol. 8, no. 2, Sensors, 2008.

22. A. Hassibi, R. Singh, A. Manickam, R. Sinha, B. Kuimelis, S. Bolouki, et al., "4.2 A fully integrated CMOS fluorescence biochip for multiplex polymerase chain-reaction (PCR) processes," 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017

23. X. Wang, Z. Mei, Y. Wang, L. Tang, Gold nanorod biochip functionalization by antibody thiolation, Talanta, 2008.

24. S. Mukherjee, I. Pan and T. Samanta, "Algorithm for fault localization on a digital microfluidic biochip using particle swarm optimization technique," 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, 2016

25. VI. Butvilovskaya, SB. Popletaeva, VR. Chechetkin, ZI. Zubtsova, MV. Tsybulskaya, LO. Samokhina, Multiplex determination of serological signatures in the sera of colorectal cancer patients using hydrogel biochips, Cancer Med, vol. 5, no. 7, 2016.

26. J. Gao, Z. H. Ji, L. Zhang, Z. J. Shao and Y. P. Yan, "New Biochip-Based Absolute Quantitative Detection System for Nucleic Acid Molecules: A Primary Assay," 2016 8th International Conference on Information Technology in Medicine and Education (ITME), Fuzhou, 2016

27. M. Dou, ST. Sanjay, DC. Dominguez, P. Liu, F. Xu, X. Li, "Multiplexed Instrument-Free Meningitis Diagnosis on a Polymer/Paper Hybrid Microfluidic Biochip", Biosensors & Bioelectronics, 2015.

28. J. H. C. Yeung, E. F. Y. Young and C. S. Choy, "Reducing pin count on crossreferencing Digital Microfluidic Biochip", 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne VIC, 2014

29. C. Wang, L. Wang, S. Tadepalli, J.J. Morrissey, E.D. Kharasch, R.R. Naik, "Ultra-robust Biochips with Metal-Organic Framework Coating for Point-of-Care Diagnosis", ACS Sensors, 2018.

30. S. Roy, C. R. Wu and T. Y. Ho, "Recent trends in chip-level design automation for digital microfluidic biochips," 2014 International Symposium on Integrated Circuits (ISIC), Singapore, 2014.