Purificación de biogás usando Cianobacterias Purificación de biogás usando cianobacterias

Contenido principal de artículos

José Leiton https://orcid.org/0000-0002-4361-0728
Laura Brenes
Lorena Uribe-Lorío

Palabras clave

Biogás, reducción de dióxido de carbono, Cyanobacteria

Resumen


Objetivo: Investigar técnicas biológicas para purificar biogás. Metodología: El biogás con bajo contenido de dióxido de carbono fue burbujeado en dos soluciones acuosas que contenían cianobacterias filamentosas de diferentes cepas de Leptolyngbya sp. Luego, los resultados obtenidos fueron comparados contra un blanco. Resultados y Concluiones: El biogás que fue parcialmente purificado redujo su contenido de dióxido de carbono en una proporción de 20 % a < 10 % luego de estar en contacto con cianobacterias. A la vez, el oxígeno producido durante la fotosíntesis se mantuvo por debajo de los límites de explosión para la mezcla metano-oxígeno. En contraste, el blanco usado en el ensayo se saturó de dióxido de carbono, causando una caída en el pH conforme pasaba el tiempo. El contenido de metano en el biogás purificado, cuya pureza fue medida con un método volumétrico, superó el 90 %. Las dos cepas de cianobacteria usadas tenían una composición en base seca de proteína ? 25 % y en lípidos < 2 %.


Abstract 66 | PDF Downloads 72 HTML Downloads 8

Referencias

1. Basic Data on Biogas, Svenskt Gastekniskt Center AB [Internet], Malmö, Sweden. 2012. Available: < https://tinyurl.com/biogas-suecia > [Accessed February 14th, 2019]

2. C. Mao, Y. Feng, X. Wang & G. Ren “Review on research achievements of biogas from anaerobic digestion”, Renewable Sustainable Energy Rev, Vol. 45, pp. 540-555, 2015. doi:10.1016/j.rser.2015.02.032.

3. J. Ogejo, Z. Wen, J. Ignosh, E. Bendfeldt & E. Collins (2009) Biomethane Technology [Internet], Blacksburg, VA, pp. 442–881. Available: < https://tinyurl.com/biomethane-Vtech> [Accessed February 14th, 2019]

4. N. Abatzoglou & S. Boivin, ”A review of biogas purification process”, Biofuels, Bioproduction & Biorefinery, Vol. 3, pp., 42–71. 2008. DOI: https://doi.org/10.1002/bbb.117.

5. Q. Zhao, E. Leonhardt, C. MacConnell, C. Frear & S, Purification Technologies for Biogas Generated by Anaerobic Digestion, Climate Friendly Farming Improvement Carbon Footprint. Agric. Pacific Northwest., 2010. CSANR Res. Report 2010-00. Available: <http://www.build-a-biogas-plant.com/PDF/BiogasPurificationTech2010.PDF> [Accessed February 20th, 2019]

6. E. Ryckebosch, M. Drouillon & H. Vervaeren ”Techniques for transformation of biogas to biomethane”, Biomass and Bioenergy, Vol. 35, pp. 1633–1645, 2011. Available: <http://dx.doi.org/10.1016/j.biombioe.2011.02.033> [Accessed February 14th, 2019]

7. M. Beil & U. Hoffstede, Technical success of the applied biogas upgrading methods, Biogasmax, Europe, 2010. Available:< https://tinyurl.com/biogasmax > [Accessed February 14th, 2019][8]

8. G. Mann, M. Schlegel, R. Schumann & A Sakalauskas. “Biogas-conditioning with microalgae”, Agronomy Research, Vol. 7, 2009, pp. 33–38.

9. A. Converti, R. Oliveira, B. Torres, A Lodi & M. Zilli, “Biogas production and valorization by means of a two-step biological process“, Bioresource Technology, Vol 100, pp. 5771-6, 2009. DOI: https://doi.org/10.1016/j.biortech.2009.05.072.

10. M. Koller, A. Salerno, P. Tuffner, M. Koinigg, H. Böchzelt, S. Schober, S. Pieber, H. Schnitzer, M. Mittelbach & G. Braunegg, Characteristics and potential of micro algal cultivation strategies: a review, J. Clean. Prod. 37, pp. 377-388, 2012.

11. L. Christenson & R. Sims. ”Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts“, Biotechnology Advances, Vol. 29, pp. 686-702, 2011.

12. S. Dubey, J. Dubey, S. Mehra, P. Tiwari & A. Bishwa ¨Potential use of cyanobacterial species in bioremediation of industrial effluents¨, African J. Biotech, vol. 10, no.7, pp. 1125-1132, 2011.

13. S. Radman & R. Al-Hasan, "Oil pollution and Cyanobacteria, The ecology of cyanobacteria: their diversity in time and space, Dordrecht", Netherlands, Springer, pp. 307-319, 2000.

14. P. Sar, S. Kazy, K. D. Paul & A. Sarkar, "Metal bioremediation by thermophilic microorganisms, In Thermophilic Microbes in Environmental and Industrial Biotechnology", Dordrecht, Netherlands, Springer, pp. 171-201, 2013.

15. B.A Whitton. & M. Potts, "Introduction to the Cyanobacteria, The Ecology of Cyanobacteria, Dordrecht", Netherlands, Springer, 2000, pp. 1–11.

16. P. Da Rós, C. Silva, M. Silva, M. Fiore & H. de Castro, (2013) Assessment of Chemical and Physico-Chemical Properties of Cyanobacterial Lipids for Biodiesel Production, 17- Mar Drugs [Internet] Vol. 11(7), pp. 2365-2381 Available: <http://tinyurl.com/pd73on2> [Accessed February 14th, 2019]

17. C. Jones & S. Mayfield ¨Algae biofuels: versatility for the future of bioenergy¨, Current Opinion In Biotech, Vol. 23, no.3, pp. 346–351. 2011. DOI: https://doi.org/10.1016/j.copbio.2011.10.013

18. J. Willis, L. Stone, K. Durden, N. Beecher, C. Hemenway & R. Greenwood, Barriers to Biogas Use for Renewable Energy, Water Environment Reuse Foundation, OWSO11C10, 2012. Available: <https://tinyurl.com/biogas-barriers-rep> [Accessed February 20, 2019]

19. C. Cooper & P. Wiezevich "Effects of Temperature and Pressure on the Upper Explosive Limit of Methane-Oxygen Mixtures", Industrial Engineering Chemistry, Vol. 21, no.12, pp. 1210-1214, 1929

20. R. Riding, ¨A Hard Life for Cyanobacteria¨, Science, Vol. 336 (6080), 2012, pp. 427-428.

21. M. Badger & D. Price "CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution", J. Exp. Botany, Vol. 54, no. 383, pp. 609-622, 2002

22. B. Mukherjee & J. Moroney, Algal Carbon Dioxide Concentrating Mechanisms. Chichester UK, 2011. DOI: https://doi.org/10.1002/9780470015902.a0000314.pub3

23. C. Gónzalez-López, F. Acién-Fernández., J. Fernández-Sevilla, J. Sánchez-Fernández, M. Cerón-García & E. Molina-García, "Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes", Bioresource Technology, Vol. 100, no. 23, pp. 5904-5910, 2009.

24. M. Sánchez-Mirón, A. Cerón-García, F. Contreras-Gómez, F. García-Camacho, E. Molina-Grima & Y. Chisti, "Shear stress tolerance and biochemical characterization of Phaedactylum tricornutum in quasi steady-state continuous culture in outdoor photoreactors", Biochem Engineering, Vol. 16, no. 3, pp. 287-297, 2003

25. S. Morales, Diversidad Morfológica y Posición filogenética de cianobacterias encontradas en fuentes termales y volcanes de Costa Rica, Master Thesis in Microbiology. Retrieved from University of Costa Rica Library, 2008.

26. R. Rippka, J. Deruelles, J. Waterbury, M. Herdman & R. Stanier ¨Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria¨, Microbiology Vol. 111, pp 1-6. 1976. DOI: https://doi.org/10.1099/00221287-111-1-1

27. M. Abel-Hadi, "A simple apparatus for biogas quality determination", Misr J. of Agricultural Engineering, Vol. 25, pp.1055–1066, 2008.

28. S. Van Wychem, M. Laurens, Determination of total Solids and Ash in Algal Biomass, NREL, Denver, CO, 2013- Available: < https://www.nrel.gov/docs/fy16osti/60956.pdf> [Accessed February 20, 2019]

29. C. Gónzalez-López, M. Cerón-García, F. Ancién-Fernández, C. Segovia-Bustos, Y. Chisti & J. Fernández-Sevilla ¨Protein measurements of microalgal and cyanobacterial biomass¨, Bioresource Technology. Vol 101, pp. 7587-7591, 2010

30. E. Bligh & W. J Dyer, "A rapid method of total lipid extraction and purification", Canadian J. Biochem. Phys, Vol. 37, no. 8, pp. 911-917, 1959