Purification of biogas using Cyanobacteria
Copyright (c) 2019 Investigación e Innovación en Ingenierías
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Articles
- Submited: February 26, 2019
-
Published: July 1, 2019
Abstract
Objective: Investigate biological techniques to purify biogas. Methodology: Biogas with low carbon dioxide concentration was bubbled in two aqueous mediums containing different strains of Leptolyngbya sp. filamentous cyanobacteria and the results were compared with a blank. Results y Conclusions: Biogas that was partially purified, reduced its carbon dioxide concentration further from 20 % to < 10 % after being in contact with cyanobacteria and, at the same time, the oxygen produced during photosynthesis was kept below the explosion limit for the methane-oxygen mixture. In contrast, the blank used to purify the biogas was saturated with carbon dioxide, causing a drop in pH as time elapsed. Methane content of the purified biogas was over 90 %. Its purity was measured with a volumetric method. The two strains of cyanobacteria used had a dry basis composition of protein ? 25 % and lipids < 2 %.
References
- Basic Data on Biogas, Svenskt Gastekniskt Center AB [Internet], Malmö, Sweden. 2012. Available: < https://tinyurl.com/biogas-suecia > [Accessed February 14th, 2019]
- C. Mao, Y. Feng, X. Wang & G. Ren “Review on research achievements of biogas from anaerobic digestion”, Renewable Sustainable Energy Rev, Vol. 45, pp. 540-555, 2015. doi:10.1016/j.rser.2015.02.032.
- J. Ogejo, Z. Wen, J. Ignosh, E. Bendfeldt & E. Collins (2009) Biomethane Technology [Internet], Blacksburg, VA, pp. 442–881. Available: < https://tinyurl.com/biomethane-Vtech> [Accessed February 14th, 2019]
- N. Abatzoglou & S. Boivin, ”A review of biogas purification process”, Biofuels, Bioproduction & Biorefinery, Vol. 3, pp., 42–71. 2008. DOI: https://doi.org/10.1002/bbb.117.
- Q. Zhao, E. Leonhardt, C. MacConnell, C. Frear & S, Purification Technologies for Biogas Generated by Anaerobic Digestion, Climate Friendly Farming Improvement Carbon Footprint. Agric. Pacific Northwest., 2010. CSANR Res. Report 2010-00. Available: <http://www.build-a-biogas-plant.com/PDF/BiogasPurificationTech2010.PDF> [Accessed February 20th, 2019]
- E. Ryckebosch, M. Drouillon & H. Vervaeren ”Techniques for transformation of biogas to biomethane”, Biomass and Bioenergy, Vol. 35, pp. 1633–1645, 2011. Available: <http://dx.doi.org/10.1016/j.biombioe.2011.02.033> [Accessed February 14th, 2019]
- M. Beil & U. Hoffstede, Technical success of the applied biogas upgrading methods, Biogasmax, Europe, 2010. Available:< https://tinyurl.com/biogasmax > [Accessed February 14th, 2019][8]
- G. Mann, M. Schlegel, R. Schumann & A Sakalauskas. “Biogas-conditioning with microalgae”, Agronomy Research, Vol. 7, 2009, pp. 33–38.
- A. Converti, R. Oliveira, B. Torres, A Lodi & M. Zilli, “Biogas production and valorization by means of a two-step biological process“, Bioresource Technology, Vol 100, pp. 5771-6, 2009. DOI: https://doi.org/10.1016/j.biortech.2009.05.072.
- M. Koller, A. Salerno, P. Tuffner, M. Koinigg, H. Böchzelt, S. Schober, S. Pieber, H. Schnitzer, M. Mittelbach & G. Braunegg, Characteristics and potential of micro algal cultivation strategies: a review, J. Clean. Prod. 37, pp. 377-388, 2012.
- L. Christenson & R. Sims. ”Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts“, Biotechnology Advances, Vol. 29, pp. 686-702, 2011.
- S. Dubey, J. Dubey, S. Mehra, P. Tiwari & A. Bishwa ¨Potential use of cyanobacterial species in bioremediation of industrial effluents¨, African J. Biotech, vol. 10, no.7, pp. 1125-1132, 2011.
- S. Radman & R. Al-Hasan, "Oil pollution and Cyanobacteria, The ecology of cyanobacteria: their diversity in time and space, Dordrecht", Netherlands, Springer, pp. 307-319, 2000.
- P. Sar, S. Kazy, K. D. Paul & A. Sarkar, "Metal bioremediation by thermophilic microorganisms, In Thermophilic Microbes in Environmental and Industrial Biotechnology", Dordrecht, Netherlands, Springer, pp. 171-201, 2013.
- B.A Whitton. & M. Potts, "Introduction to the Cyanobacteria, The Ecology of Cyanobacteria, Dordrecht", Netherlands, Springer, 2000, pp. 1–11.
- P. Da Rós, C. Silva, M. Silva, M. Fiore & H. de Castro, (2013) Assessment of Chemical and Physico-Chemical Properties of Cyanobacterial Lipids for Biodiesel Production, 17- Mar Drugs [Internet] Vol. 11(7), pp. 2365-2381 Available: <http://tinyurl.com/pd73on2> [Accessed February 14th, 2019]
- C. Jones & S. Mayfield ¨Algae biofuels: versatility for the future of bioenergy¨, Current Opinion In Biotech, Vol. 23, no.3, pp. 346–351. 2011. DOI: https://doi.org/10.1016/j.copbio.2011.10.013
- J. Willis, L. Stone, K. Durden, N. Beecher, C. Hemenway & R. Greenwood, Barriers to Biogas Use for Renewable Energy, Water Environment Reuse Foundation, OWSO11C10, 2012. Available: <https://tinyurl.com/biogas-barriers-rep> [Accessed February 20, 2019]
- C. Cooper & P. Wiezevich "Effects of Temperature and Pressure on the Upper Explosive Limit of Methane-Oxygen Mixtures", Industrial Engineering Chemistry, Vol. 21, no.12, pp. 1210-1214, 1929
- R. Riding, ¨A Hard Life for Cyanobacteria¨, Science, Vol. 336 (6080), 2012, pp. 427-428.
- M. Badger & D. Price "CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution", J. Exp. Botany, Vol. 54, no. 383, pp. 609-622, 2002
- B. Mukherjee & J. Moroney, Algal Carbon Dioxide Concentrating Mechanisms. Chichester UK, 2011. DOI: https://doi.org/10.1002/9780470015902.a0000314.pub3
- C. Gónzalez-López, F. Acién-Fernández., J. Fernández-Sevilla, J. Sánchez-Fernández, M. Cerón-García & E. Molina-García, "Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes", Bioresource Technology, Vol. 100, no. 23, pp. 5904-5910, 2009.
- M. Sánchez-Mirón, A. Cerón-García, F. Contreras-Gómez, F. García-Camacho, E. Molina-Grima & Y. Chisti, "Shear stress tolerance and biochemical characterization of Phaedactylum tricornutum in quasi steady-state continuous culture in outdoor photoreactors", Biochem Engineering, Vol. 16, no. 3, pp. 287-297, 2003
- S. Morales, Diversidad Morfológica y Posición filogenética de cianobacterias encontradas en fuentes termales y volcanes de Costa Rica, Master Thesis in Microbiology. Retrieved from University of Costa Rica Library, 2008.
- R. Rippka, J. Deruelles, J. Waterbury, M. Herdman & R. Stanier ¨Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria¨, Microbiology Vol. 111, pp 1-6. 1976. DOI: https://doi.org/10.1099/00221287-111-1-1
- M. Abel-Hadi, "A simple apparatus for biogas quality determination", Misr J. of Agricultural Engineering, Vol. 25, pp.1055–1066, 2008.
- S. Van Wychem, M. Laurens, Determination of total Solids and Ash in Algal Biomass, NREL, Denver, CO, 2013- Available: < https://www.nrel.gov/docs/fy16osti/60956.pdf> [Accessed February 20, 2019]
- C. Gónzalez-López, M. Cerón-García, F. Ancién-Fernández, C. Segovia-Bustos, Y. Chisti & J. Fernández-Sevilla ¨Protein measurements of microalgal and cyanobacterial biomass¨, Bioresource Technology. Vol 101, pp. 7587-7591, 2010
- E. Bligh & W. J Dyer, "A rapid method of total lipid extraction and purification", Canadian J. Biochem. Phys, Vol. 37, no. 8, pp. 911-917, 1959