Contenido principal de artículos

Vladimir Ballesteros-Ballesteros Carlos López-Torres Marcela Torres-Rodríguez Sébastien Lozano-Forero https://orcid.org/0000-0002-9551-165X

Resumen

Objetivo: Describir los efectos y las experiencias de la incorporación de la aplicación “Calculadora Gráfica” de GeoGebra para el aprendizaje de la función lineal con estudiantes de undécimo grado a partir de la integración de dispositivos móviles al aula de clase. Método: Desde el paradigma pragmático, se empleó un diseño explicativo secuencial para orientar los esfuerzos investigativos conducentes a validar la hipótesis relacionada con una influencia positiva del aprovechamiento de teléfonos inteligentes y tabletas en el desempeño escolar. En la etapa cuantitativa se realizó un diseño experimental de cuatro grupos de Solomon y durante la etapa cualitativa se empleó un test actitudinal y se aplicaron entrevistas semiestructuradas con estudiantes que participaron del tratamiento con la aplicación móvil. Resultados: Los resultados obtenidos en el postest por los grupos experimentales fueron superiores a los obtenidos por los grupos control que recibieron una intervención mediada por recursos didácticos tradicionales y los estudiantes que recibieron el tratamiento manifestaron mayor interés y motivación por el aprendizaje del tema abordado. Discusión y Conclusiones: La integración de dispositivos móviles en el aula promueve otras formas innovadoras de aprender y desarrolla habilidades en los estudiantes, favoreciendo su motivación e interés.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles de artículo

Sección
ARTíCULOS
Referencias

Citas

  1. Aizikovitsh-Udi, E., & Radakovic, N. (2012). Teaching probability by using geogebra dynamic tool and implemanting critical thinking skills. Procedia-Social and Behavioral Sciences, (46), 4943–4947. https://doi.org/10.1016/j.sbspro.2012.06.364
  2. All, A., Plovie, B., Castellar, E. P. N., & Van Looy, J. (2017). Pre-test influences on the effectiveness of digital-game based learning: A case study of a fire safety game. Computers & Education, (114), 24–37. https://doi.org/10.1016/j.compedu.2017.05.018
  3. Azar, A. S., & Nasiri, H. (2014). Learners’ attitudes toward the effectiveness of mobile assisted language learning (MALL) in L2 listening comprehension. Procedia-Social and Behavioral Sciences, (98), 1836–1843. https://doi.org/10.1016/j.sbspro.2014.03.613
  4. Bano, M., Zowghi, D., Kearney, M., Schuck, S., & Aubusson, P. (2018). Mobile learning for science and mathematics school education: A systematic review of empirical evidence. Computers & Education, (121), 30–58. https://doi.org/10.1016/j.compedu.2018.02.006
  5. Baron, N. S., & Campbell, E. M. (2012). Gender and mobile phones in cross-national context. Language Sciences, 34(1), 13–27. https://doi.org/10.1016/j.langsci.2011.06.018
  6. Bauer, L. B. (2018). A necessary addiction: Student conceptualizations of technology and its impact on teaching and learning. Journal of College Reading and Learning, 48(1), 67–81. https://doi.org/10.1080/10790195.2017.1365668
  7. Benítez Armas, A. F. (2016). Un experimento con GeoGebra (app) para el desarrollo del pensamiento matemático. Revista de Arte y Humanidades, 3(4), 9–22. Retrieved from https://www.upaep.mx/images/revista_artes_humanidades/pdf/AH_4212.pdf
  8. Bokosmaty, S., Mavilidi, M.-F., & Paas, F. (2017). Making versus observing manipulations of geometric properties of triangles to learn geometry using dynamic geometry software. Computers & Education, (113), 313–326. https://doi.org/10.1016/j.compedu.2017.06.008
  9. Braver, M. W., & Braver, S. L. (1988). Statistical treatment of the Solomon four-group design: A meta-analytic approach. Psychological Bulletin, 104(1), 150. https://doi.org/10.1037/0033-2909.104.1.150
  10. Breda, A. M. D., & Santos, J. M. D. S. Dos. (2016). Complex functions with GeoGebra. Teaching Mathematics and Its Applications: An International Journal of the IMA, 35(2), 102–110. https://doi.org/10.1093/teamat/hrw010
  11. Burston, J. (2011). Realizing the potential of mobile phone technology for language learning. IALLT Journal of Language Learning Technologies, 41(2), 56–71. https://doi.org/10.17161/iallt.v41i2.8490
  12. Caligaris, M. G., Schivo, M. E., & Romiti, M. R. (2015). Calculus & GeoGebra, an interesting partnership. Procedia-Social and Behavioral Sciences, (174), 1183–1188. https://doi.org/10.1016/j.sbspro.2015.01.735
  13. Chan, S. W., & Ismail, Z. (2014). Developing statistical reasoning assessment instrument for high school students in descriptive statistics. Procedia-Social and Behavioral Sciences, (116), 4338–4343. https://doi.org/10.1016/j.sbspro.2014.01.943
  14. Cheng Lim, S., Mustapha, F. I., Aagaard-Hansen, J., Calopietro, M., Aris, T., & Bjerre-Christensen, U. (2019). Impact of Continuing Medical Education for Primary Healthcare Providers in Malaysia on Diabetes Knowledge, Attitudes, Skills and Clinical Practices. Medical Education Online, (25), 1–11. https://doi.org/10.1080/10872981.2019.1710330
  15. Cox, M. J., & Marshall, G. (2007). Effects of ICT: do we know what we should know? Education and Information Technologies, 12(2), 59–70. https://doi.org/10.1007/s10639-007-9032-x
  16. Cruz, S., Carvalho, A. A. A., & Araújo, I. (2017). A game for learning history on mobile devices. Education and Information Technologies, 22(2), 515–531. https://doi.org/10.1007/s10639-016-9491-z
  17. Diković, L. (2009). Applications GeoGebra into teaching some topics of mathematics at the college level. Computer Science and Information Systems, 6(2), 191–203. https://doi.org/10.2298/CSIS0902191D
  18. Drijvers, P. (2015). Digital technology in mathematics education: Why it works (or doesn’t). Selected Regular Lectures from the 12th International Congress on Mathematical Education, 135–151. https://doi.org/10.1007/978-3-319-17187-6_8
  19. Göksu, İ., & Atici, B. (2013). Need for mobile learning: technologies and opportunities. Procedia-Social and Behavioral Sciences, 103, 685–694. https://doi.org/10.1016/j.sbspro.2013.10.388
  20. Harley, J. M., Poitras, E. G., Jarrell, A., Duffy, M. C., & Lajoie, S. P. (2016). Comparing virtual and location-based augmented reality mobile learning: emotions and learning outcomes. Educational Technology Research and Development, 64(3), 359–388. https://doi.org/10.1007/s11423-015-9420-7
  21. Heflin, H., Shewmaker, J., & Nguyen, J. (2017). Impact of mobile technology on student attitudes, engagement, and learning. Computers & Education, (107), 91–99. https://doi.org/10.1016/j.compedu.2017.01.006
  22. Hohenwarter, M., & Jones, K. (2007). Ways of linking geometry and algebra, the case of Geogebra. Proceedings of the British Society for Research into Learning Mathematics, 27(3), 126–131. http://eprints.soton.ac.uk/id/eprint/50742
  23. Huang, C. S. J., Yang, S. J. H., Chiang, T. H. C., & Su, A. Y. S. (2016). Effects of situated mobile learning approach on learning motivation and performance of EFL students. Journal of Educational Technology & Society, 19(1), 263–276. https://doi.org/https://www.jstor.org/stable/jeductechsoci.19.1.263
  24. Huang, R., & Price, J. K. (2016). ICT in education in global context. Springer, (10), 973–978. https://doi.org/10.1007/978-3-319-19234-5_5
  25. Hwang, G.-J., & Chang, H.-F. (2011). A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Computers & Education, 56(4), 1023–1031. https://doi.org/10.1016/j.compedu.2010.12.002
  26. İBİLİ, E. (2019). The Use of Dynamic Geometry Software from a Pedagogical Perspective: Current Status and Future Prospects. Journal of Computer and Education Research, 7(14), 337–355. https://doi.org/10.18009/jcer.579517
  27. Ivankova, N. V, Creswell, J. W., & Stick, S. L. (2006). Using mixed-methods sequential explanatory design: From theory to practice. Field Methods, 18(1), 3–20. https://doi.org/10.1177/1525822X05282260
  28. Jeon, Y.-J. (2015). A study on technology embedded english classes using qr codes. International Journal of Contents, 11(1), 1–6. https://doi.org/10.5392/IJoC.2015.11.1.001
  29. Keller, J. M. (2016). Motivation, learning, and technology: Applying the ARCS-V motivation model. Participatory Educational Research, 3(2), 1–15. https://doi.org/10.17275/per.16.06.3.2
  30. Kesharwani, A. (2020). Do (how) digital natives adopt a new technology differently than digital immigrants? A longitudinal study. Information & Management, 57(2), 103170. https://doi.org/10.1016/j.im.2019.103170
  31. Kolář, P. (2019). GeoGebra for Secondary School Physics. Journal of Physics: Conference Series, 1223(1), 12008. https://doi.org/10.1088/1742-6596/1223/1/012008
  32. König, A., & Bernsen, D. (2014). Mobile learning in history education. Journal of Educational Media, Memory, and Society, 6(1), 107–123. https://doi.org/10.3167/jemms.2014.060106
  33. Kösa, T., & Karakuş, F. (2010). Using dynamic geometry software Cabri 3D for teaching analytic geometry. Procedia-Social and Behavioral Sciences, 2(2), 1385–1389. https://doi.org/10.1016/j.sbspro.2010.03.204
  34. Lan, Y.-F., Tsai, P.-W., Yang, S.-H., & Hung, C.-L. (2012). Comparing the social knowledge construction behavioral patterns of problem-based online asynchronous discussion in e/m-learning environments. Computers & Education, 59(4), 1122–1135. https://doi.org/10.1016/j.compedu.2012.05.004
  35. Ljajko, E., & Ibro, V. (2013). Development of Ideas in a GeoGebra-Aided Mathematics Instruction. Online Submission, 3(3), 1-7. https://doi.org/10.13054/mije.si.2013.01
  36. Motiwalla, L. F. (2007). Mobile learning: A framework and evaluation. Computers & Education, 49(3), 581–596. https://doi.org/10.1016/j.compedu.2005.10.011
  37. Mudaly, V., & Fletcher, T. (2019). The effectiveness of Geogebra when teaching linear functions using the iPad. Problems of Education in the 21st Century, 77(1), 55–81. https://doi.org/0.33225/pec/19.77.55
  38. Pachler, N., Bachmair, B., & Cook, J. (2010a). Mobile learning: A topography. In Mobile Learning, 29–72. https://doi.org/10.1007/978-1-4419-0585-7_2
  39. Pachler, N., Bachmair, B., & Cook, J. (2010b). Mobile Learning: Structures, Agency, Practices. https://doi.org/10.1007/978-1-4419-0585-7
  40. Pamungkas, M. D., Rahmawati, F., & Dinara, H. A. (2020). Integrating GeoGebra into Space Geometry in College. 3rd International Conference on Learning Innovation and Quality Education (ICLIQE 2019), 999–1006. https://doi.org/10.2991/assehr.k.200129.123
  41. Pilli, O., & Aksu, M. (2013). The effects of computer-assisted instruction on the achievement, attitudes and retention of fourth grade mathematics students in North Cyprus. Computers & Education, (62), 62–71. https://doi.org/10.1016/j.compedu.2012.10.010
  42. Pimmer, C., Mateescu, M., & Gröhbiel, U. (2016). Mobile and ubiquitous learning in higher education settings. A systematic review of empirical studies. Computers in Human Behavior, (63), 490–501. https://doi.org/10.1016/j.chb.2016.05.057
  43. Radakovic, N., & McDougall, D. (2012). Using dynamic geometry software for teaching conditional probability with area-proportional Venn diagrams. International Journal of Mathematical Education in Science and Technology, 43(7), 949–953. https://doi.org/10.1080/0020739X.2011.633628
  44. Reisa, Z. A. (2010). Computer supported mathematics with Geogebra. Procedia-Social and Behavioral Sciences, (9), 1449–1455. https://doi.org/10.1016/j.sbspro.2010.12.348
  45. Rybanska, V., McKay, R., Jong, J., & Whitehouse, H. (2018). Rituals improve children’s ability to delay gratification. Child Development, 89(2), 349–359. https://doi.org/10.1111/cdev.12762
  46. Schuck, S., Kearney, M., & Burden, K. (2017). Exploring mobile learning in the Third Space. Technology, Pedagogy and Education, 26(2), 121–137. https://doi.org/10.1080/1475939X.2016.1230555
  47. Solomon, R. L. (1949). An extension of control group design. Psychological Bulletin, 46(2), 137. https://doi.org/10.1037/h0062958
  48. Sung, Y.-T., Chang, K.-E., & Liu, T.-C. (2016). The effects of integrating mobile devices with teaching and learning on students’ learning performance: A meta-analysis and research synthesis. Computers & Education, (94), 252–275. https://doi.org/10.1016/j.compedu.2015.11.008
  49. Tomaschko, M., & Hohenwarter, M. (2018). Usability Evaluation of a Mobile Graphing Calculator Application Using Eye Tracking. International Conference on Learning and Collaboration Technologies, 180–190. https://doi.org/10.1007/978-3-319-91743-6_14
  50. Van Landschoot, R., Portzky, G., & Van Heeringen, K. (2017). Knowledge, self-confidence and attitudes towards suicidal patients at emergency and psychiatric departments: A randomised controlled trial of the effects of an educational poster campaign. International Journal of Environmental Research and Public Health, 14(3), 304. https://doi.org/10.3390/ijerph14030304
  51. Vanden Abeele, M. M. P. (2016). Mobile youth culture: A conceptual development. Mobile Media & Communication, 4(1), 85–101. https://doi.org/10.1177/2050157915601455
  52. Wu, W.-H., Wu, Y.-C. J., Chen, C.-Y., Kao, H.-Y., Lin, C.-H., & Huang, S.-H. (2012). Review of trends from mobile learning studies: A meta-analysis. Computers & Education, 59(2), 817–827. https://doi.org/10.1016/j.compedu.2012.03.016
  53. Zazkis, R. (2020). Technology in Mathematics Teacher Education on Trust and Pitfalls. In STEM Teachers and Teaching in the Digital Era (pp. 243–259). https://doi.org/10.1007/978-3-030-29396-3_13
  54. Zengin, Y., Furkan, H., & Kutluca, T. (2012). The effect of dynamic mathematics software geogebra on student achievement in teaching of trigonometry. Procedia-Social and Behavioral Sciences, (31), 183–187. https://doi.org/10.1016/j.sbspro.2011.12.038
  55. Zulnaidi, H., Oktavika, E., & Hidayat, R. (2020). Effect of use of GeoGebra on achievement of high school mathematics students. Education and Information Technologies, 25(1), 51–72. https://doi.org/10.1007/s10639-019-09899-y