Fecha de registro

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-SinObrasDerivadas 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.
La integración de dispositivos móviles en el aula para la enseñanza del álgebra: el caso de la función lineal
Corresponding Author(s) : Vladimir Ballesteros-Ballesteros
Educación y Humanismo,
Vol. 24 Núm. 42 (2022): Enero-Junio
Resumen
Objetivo: Describir los efectos y las experiencias de la incorporación de la aplicación “Calculadora Gráfica” de GeoGebra para el aprendizaje de la función lineal con estudiantes de undécimo grado a partir de la integración de dispositivos móviles al aula de clase. Método: Desde el paradigma pragmático, se empleó un diseño explicativo secuencial para orientar los esfuerzos investigativos conducentes a validar la hipótesis relacionada con una influencia positiva del aprovechamiento de teléfonos inteligentes y tabletas en el desempeño escolar. En la etapa cuantitativa se realizó un diseño experimental de cuatro grupos de Solomon y durante la etapa cualitativa se empleó un test actitudinal y se aplicaron entrevistas semiestructuradas con estudiantes que participaron del tratamiento con la aplicación móvil. Resultados: Los resultados obtenidos en el postest por los grupos experimentales fueron superiores a los obtenidos por los grupos control que recibieron una intervención mediada por recursos didácticos tradicionales y los estudiantes que recibieron el tratamiento manifestaron mayor interés y motivación por el aprendizaje del tema abordado. Discusión y Conclusiones: La integración de dispositivos móviles en el aula promueve otras formas innovadoras de aprender y desarrolla habilidades en los estudiantes, favoreciendo su motivación e interés.
Palabras clave
Descargar Cita
Endnote/Zotero/Mendeley (RIS)BibTeX
- Aizikovitsh-Udi, E., & Radakovic, N. (2012). Teaching probability by using geogebra dynamic tool and implemanting critical thinking skills. Procedia-Social and Behavioral Sciences, (46), 4943–4947. https://doi.org/10.1016/j.sbspro.2012.06.364
- All, A., Plovie, B., Castellar, E. P. N., & Van Looy, J. (2017). Pre-test influences on the effectiveness of digital-game based learning: A case study of a fire safety game. Computers & Education, (114), 24–37. https://doi.org/10.1016/j.compedu.2017.05.018
- Azar, A. S., & Nasiri, H. (2014). Learners’ attitudes toward the effectiveness of mobile assisted language learning (MALL) in L2 listening comprehension. Procedia-Social and Behavioral Sciences, (98), 1836–1843. https://doi.org/10.1016/j.sbspro.2014.03.613
- Bano, M., Zowghi, D., Kearney, M., Schuck, S., & Aubusson, P. (2018). Mobile learning for science and mathematics school education: A systematic review of empirical evidence. Computers & Education, (121), 30–58. https://doi.org/10.1016/j.compedu.2018.02.006
- Baron, N. S., & Campbell, E. M. (2012). Gender and mobile phones in cross-national context. Language Sciences, 34(1), 13–27. https://doi.org/10.1016/j.langsci.2011.06.018
- Bauer, L. B. (2018). A necessary addiction: Student conceptualizations of technology and its impact on teaching and learning. Journal of College Reading and Learning, 48(1), 67–81. https://doi.org/10.1080/10790195.2017.1365668
- Benítez Armas, A. F. (2016). Un experimento con GeoGebra (app) para el desarrollo del pensamiento matemático. Revista de Arte y Humanidades, 3(4), 9–22. Retrieved from https://www.upaep.mx/images/revista_artes_humanidades/pdf/AH_4212.pdf
- Bokosmaty, S., Mavilidi, M.-F., & Paas, F. (2017). Making versus observing manipulations of geometric properties of triangles to learn geometry using dynamic geometry software. Computers & Education, (113), 313–326. https://doi.org/10.1016/j.compedu.2017.06.008
- Braver, M. W., & Braver, S. L. (1988). Statistical treatment of the Solomon four-group design: A meta-analytic approach. Psychological Bulletin, 104(1), 150. https://doi.org/10.1037/0033-2909.104.1.150
- Breda, A. M. D., & Santos, J. M. D. S. Dos. (2016). Complex functions with GeoGebra. Teaching Mathematics and Its Applications: An International Journal of the IMA, 35(2), 102–110. https://doi.org/10.1093/teamat/hrw010
- Burston, J. (2011). Realizing the potential of mobile phone technology for language learning. IALLT Journal of Language Learning Technologies, 41(2), 56–71. https://doi.org/10.17161/iallt.v41i2.8490
- Caligaris, M. G., Schivo, M. E., & Romiti, M. R. (2015). Calculus & GeoGebra, an interesting partnership. Procedia-Social and Behavioral Sciences, (174), 1183–1188. https://doi.org/10.1016/j.sbspro.2015.01.735
- Chan, S. W., & Ismail, Z. (2014). Developing statistical reasoning assessment instrument for high school students in descriptive statistics. Procedia-Social and Behavioral Sciences, (116), 4338–4343. https://doi.org/10.1016/j.sbspro.2014.01.943
- Cheng Lim, S., Mustapha, F. I., Aagaard-Hansen, J., Calopietro, M., Aris, T., & Bjerre-Christensen, U. (2019). Impact of Continuing Medical Education for Primary Healthcare Providers in Malaysia on Diabetes Knowledge, Attitudes, Skills and Clinical Practices. Medical Education Online, (25), 1–11. https://doi.org/10.1080/10872981.2019.1710330
- Cox, M. J., & Marshall, G. (2007). Effects of ICT: do we know what we should know? Education and Information Technologies, 12(2), 59–70. https://doi.org/10.1007/s10639-007-9032-x
- Cruz, S., Carvalho, A. A. A., & Araújo, I. (2017). A game for learning history on mobile devices. Education and Information Technologies, 22(2), 515–531. https://doi.org/10.1007/s10639-016-9491-z
- Diković, L. (2009). Applications GeoGebra into teaching some topics of mathematics at the college level. Computer Science and Information Systems, 6(2), 191–203. https://doi.org/10.2298/CSIS0902191D
- Drijvers, P. (2015). Digital technology in mathematics education: Why it works (or doesn’t). Selected Regular Lectures from the 12th International Congress on Mathematical Education, 135–151. https://doi.org/10.1007/978-3-319-17187-6_8
- Göksu, İ., & Atici, B. (2013). Need for mobile learning: technologies and opportunities. Procedia-Social and Behavioral Sciences, 103, 685–694. https://doi.org/10.1016/j.sbspro.2013.10.388
- Harley, J. M., Poitras, E. G., Jarrell, A., Duffy, M. C., & Lajoie, S. P. (2016). Comparing virtual and location-based augmented reality mobile learning: emotions and learning outcomes. Educational Technology Research and Development, 64(3), 359–388. https://doi.org/10.1007/s11423-015-9420-7
- Heflin, H., Shewmaker, J., & Nguyen, J. (2017). Impact of mobile technology on student attitudes, engagement, and learning. Computers & Education, (107), 91–99. https://doi.org/10.1016/j.compedu.2017.01.006
- Hohenwarter, M., & Jones, K. (2007). Ways of linking geometry and algebra, the case of Geogebra. Proceedings of the British Society for Research into Learning Mathematics, 27(3), 126–131. http://eprints.soton.ac.uk/id/eprint/50742
- Huang, C. S. J., Yang, S. J. H., Chiang, T. H. C., & Su, A. Y. S. (2016). Effects of situated mobile learning approach on learning motivation and performance of EFL students. Journal of Educational Technology & Society, 19(1), 263–276. https://doi.org/https://www.jstor.org/stable/jeductechsoci.19.1.263
- Huang, R., & Price, J. K. (2016). ICT in education in global context. Springer, (10), 973–978. https://doi.org/10.1007/978-3-319-19234-5_5
- Hwang, G.-J., & Chang, H.-F. (2011). A formative assessment-based mobile learning approach to improving the learning attitudes and achievements of students. Computers & Education, 56(4), 1023–1031. https://doi.org/10.1016/j.compedu.2010.12.002
- İBİLİ, E. (2019). The Use of Dynamic Geometry Software from a Pedagogical Perspective: Current Status and Future Prospects. Journal of Computer and Education Research, 7(14), 337–355. https://doi.org/10.18009/jcer.579517
- Ivankova, N. V, Creswell, J. W., & Stick, S. L. (2006). Using mixed-methods sequential explanatory design: From theory to practice. Field Methods, 18(1), 3–20. https://doi.org/10.1177/1525822X05282260
- Jeon, Y.-J. (2015). A study on technology embedded english classes using qr codes. International Journal of Contents, 11(1), 1–6. https://doi.org/10.5392/IJoC.2015.11.1.001
- Keller, J. M. (2016). Motivation, learning, and technology: Applying the ARCS-V motivation model. Participatory Educational Research, 3(2), 1–15. https://doi.org/10.17275/per.16.06.3.2
- Kesharwani, A. (2020). Do (how) digital natives adopt a new technology differently than digital immigrants? A longitudinal study. Information & Management, 57(2), 103170. https://doi.org/10.1016/j.im.2019.103170
- Kolář, P. (2019). GeoGebra for Secondary School Physics. Journal of Physics: Conference Series, 1223(1), 12008. https://doi.org/10.1088/1742-6596/1223/1/012008
- König, A., & Bernsen, D. (2014). Mobile learning in history education. Journal of Educational Media, Memory, and Society, 6(1), 107–123. https://doi.org/10.3167/jemms.2014.060106
- Kösa, T., & Karakuş, F. (2010). Using dynamic geometry software Cabri 3D for teaching analytic geometry. Procedia-Social and Behavioral Sciences, 2(2), 1385–1389. https://doi.org/10.1016/j.sbspro.2010.03.204
- Lan, Y.-F., Tsai, P.-W., Yang, S.-H., & Hung, C.-L. (2012). Comparing the social knowledge construction behavioral patterns of problem-based online asynchronous discussion in e/m-learning environments. Computers & Education, 59(4), 1122–1135. https://doi.org/10.1016/j.compedu.2012.05.004
- Ljajko, E., & Ibro, V. (2013). Development of Ideas in a GeoGebra-Aided Mathematics Instruction. Online Submission, 3(3), 1-7. https://doi.org/10.13054/mije.si.2013.01
- Motiwalla, L. F. (2007). Mobile learning: A framework and evaluation. Computers & Education, 49(3), 581–596. https://doi.org/10.1016/j.compedu.2005.10.011
- Mudaly, V., & Fletcher, T. (2019). The effectiveness of Geogebra when teaching linear functions using the iPad. Problems of Education in the 21st Century, 77(1), 55–81. https://doi.org/0.33225/pec/19.77.55
- Pachler, N., Bachmair, B., & Cook, J. (2010a). Mobile learning: A topography. In Mobile Learning, 29–72. https://doi.org/10.1007/978-1-4419-0585-7_2
- Pachler, N., Bachmair, B., & Cook, J. (2010b). Mobile Learning: Structures, Agency, Practices. https://doi.org/10.1007/978-1-4419-0585-7
- Pamungkas, M. D., Rahmawati, F., & Dinara, H. A. (2020). Integrating GeoGebra into Space Geometry in College. 3rd International Conference on Learning Innovation and Quality Education (ICLIQE 2019), 999–1006. https://doi.org/10.2991/assehr.k.200129.123
- Pilli, O., & Aksu, M. (2013). The effects of computer-assisted instruction on the achievement, attitudes and retention of fourth grade mathematics students in North Cyprus. Computers & Education, (62), 62–71. https://doi.org/10.1016/j.compedu.2012.10.010
- Pimmer, C., Mateescu, M., & Gröhbiel, U. (2016). Mobile and ubiquitous learning in higher education settings. A systematic review of empirical studies. Computers in Human Behavior, (63), 490–501. https://doi.org/10.1016/j.chb.2016.05.057
- Radakovic, N., & McDougall, D. (2012). Using dynamic geometry software for teaching conditional probability with area-proportional Venn diagrams. International Journal of Mathematical Education in Science and Technology, 43(7), 949–953. https://doi.org/10.1080/0020739X.2011.633628
- Reisa, Z. A. (2010). Computer supported mathematics with Geogebra. Procedia-Social and Behavioral Sciences, (9), 1449–1455. https://doi.org/10.1016/j.sbspro.2010.12.348
- Rybanska, V., McKay, R., Jong, J., & Whitehouse, H. (2018). Rituals improve children’s ability to delay gratification. Child Development, 89(2), 349–359. https://doi.org/10.1111/cdev.12762
- Schuck, S., Kearney, M., & Burden, K. (2017). Exploring mobile learning in the Third Space. Technology, Pedagogy and Education, 26(2), 121–137. https://doi.org/10.1080/1475939X.2016.1230555
- Solomon, R. L. (1949). An extension of control group design. Psychological Bulletin, 46(2), 137. https://doi.org/10.1037/h0062958
- Sung, Y.-T., Chang, K.-E., & Liu, T.-C. (2016). The effects of integrating mobile devices with teaching and learning on students’ learning performance: A meta-analysis and research synthesis. Computers & Education, (94), 252–275. https://doi.org/10.1016/j.compedu.2015.11.008
- Tomaschko, M., & Hohenwarter, M. (2018). Usability Evaluation of a Mobile Graphing Calculator Application Using Eye Tracking. International Conference on Learning and Collaboration Technologies, 180–190. https://doi.org/10.1007/978-3-319-91743-6_14
- Van Landschoot, R., Portzky, G., & Van Heeringen, K. (2017). Knowledge, self-confidence and attitudes towards suicidal patients at emergency and psychiatric departments: A randomised controlled trial of the effects of an educational poster campaign. International Journal of Environmental Research and Public Health, 14(3), 304. https://doi.org/10.3390/ijerph14030304
- Vanden Abeele, M. M. P. (2016). Mobile youth culture: A conceptual development. Mobile Media & Communication, 4(1), 85–101. https://doi.org/10.1177/2050157915601455
- Wu, W.-H., Wu, Y.-C. J., Chen, C.-Y., Kao, H.-Y., Lin, C.-H., & Huang, S.-H. (2012). Review of trends from mobile learning studies: A meta-analysis. Computers & Education, 59(2), 817–827. https://doi.org/10.1016/j.compedu.2012.03.016
- Zazkis, R. (2020). Technology in Mathematics Teacher Education on Trust and Pitfalls. In STEM Teachers and Teaching in the Digital Era (pp. 243–259). https://doi.org/10.1007/978-3-030-29396-3_13
- Zengin, Y., Furkan, H., & Kutluca, T. (2012). The effect of dynamic mathematics software geogebra on student achievement in teaching of trigonometry. Procedia-Social and Behavioral Sciences, (31), 183–187. https://doi.org/10.1016/j.sbspro.2011.12.038
- Zulnaidi, H., Oktavika, E., & Hidayat, R. (2020). Effect of use of GeoGebra on achievement of high school mathematics students. Education and Information Technologies, 25(1), 51–72. https://doi.org/10.1007/s10639-019-09899-y