Contenido principal de artículos

Diana Lorena Pineda-Ospina https://orcid.org/0000-0001-7967-0178

Resumen

Objetivo: Analizar la estructura intelectual del estudio de la desigualdad educativa. Metodología: Se diseñó una estrategia metodológica mixta a partir del desarrollo de un ejercicio bibliométrico. Desde la perspectiva cuantitativa, se desarrolló el procesamiento estadístico de la producción de documentos científicos de las bases de datos Scopus e ISI Web of Science en el campo de la desigualdad educativa y se construyeron y analizaron indicadores bibliométricos que permitieron la evaluación del rendimiento científico, su desarrollo y evolución. Desde la perspectiva cualitativa, se desarrolló análisis documental, semántico y de contenido sobre los documentos identificados. El procesamiento de la información se realizó en los softwares Modeler SPSS, Atlas ti, SicMAT y Knime. Resultados: Se identifica el campo de la desigualad educativa como consolidado, donde se destaca un mayor desarrollo analítico y metodológico desde finales de los noventa donde se incorporan distintas disciplinas al estudio. Conclusiones y discusiones: La estructura intelectual del campo de la desigualdad educativa se caracteriza por su alto rendimiento y visibilidad, donde disciplinas como la economía, la psicología o las humanidades han aportado significativamente al desarrollo teórico-práctico. Sin embargo, se identifican nuevos enfoques con la incorporación al análisis a partir del machine learnig, big data y deep learnig.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles de artículo

Sección
ARTíCULOS
Referencias

Citas

  1. Aurino, E., Fledderjohann, J. & Vellakkal, S. (2019). Inequalities in adolescent learning: Does the timing and persistence of food insecurity at home matter? Economics of Education Review, (70), 94-108. https://doi.org/10.1016/j.econedurev.2019.03.003
  2. Blanden, J. & Machin, S. (2004). Educational inequality and the expansion of UK higher education. Scottish Journal of Political Economy, 51(2), 230-249. https://doi.org/10.1111/j.0036-9292.2004.00304.x
  3. Boone, S. & Van Houtte, M. (2013). In search of the mechanisms conducive to class differentials in educational choice: A mixed method research. Sociological Review, 61 (3), 549-572. https://doi.org/10.1111/1467-954X.12031
  4. Boudon R. (1983). La desigualdad de oportunidades. La movilidad social en las sociedades industriales. Editorial Laia.
  5. Bourdieu, P. & Passeron J. C. (2009). Los herederos: los estudiantes y la cultura. Editorial Siglo XXI Editores.
  6. Breen, R. & Jonsson, J.O. (2005). Inequality of opportunity in comparative perspective: Recent research on educational attainment and social mobility. Annual Review of Sociology, (31), 223-243. https://doi.org/10.1146/annurev.soc.31.041304.122232
  7. Callon, M., Courtial, J. P. & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22(1), 155–205. https://doi.org/10.1007/bf02019280
  8. Cano, A.J., Solanas, S.E. & Marí-Klose, M. (2015). New social risks and educational vulnerability of boys and girls in Spain [Nuevos riesgos sociales y vulnerabilidad educativa de chicos y chicas en España]. Revista de Educación, (369), 9-30. https://doi.org/10.4438/1988-592X-RE-2015-369-288
  9. Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E. & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tolos. Journal of the American Society for Information Science and Technology, 62(7), 1382-1402. https://doi.org/10.1002/asi.21525
  10. Cobo, M.J., Lõpez-Herrera, A.G., Herrera-Viedma, E. & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609-1630. https://doi.org/10.1002/asi.22688
  11. Cobo, M.J., Martínez, M.A., Gutiérrez-Salcedo, M., Fujita, H. & Herrera-Viedma, E. (2015). 25 years at Knowledge-Based Systems: A bibliometric analysis. Knowledge-Based Systems, (80), 3-13. https://doi.org/10.1016/j.knosys.2014.12.035
  12. Connell, R.W. (1974). The causes of educational inequality: Further observations. Journal of Sociology, 10 (3), 186-189. https://doi.org/10.1177/144078337401000306
  13. D'Arcy, K. (2014). Home education, school, Travellers and educational inclusión. British Journal of Sociology of Education, 35(5), 818-835. https://doi.org/10.1080/01425692.2014.919840
  14. Duncan, G.J. & Murnane, R.J. (2011). Whither opportunity? Rising inequality, schools, and children's life chances. Whither Opportunity? Rising Inequality, Schools, and Children's Life Chances, (1), 551.
  15. Field, J. (2013). Learning Through the Ages? Generational Inequalities and Inter-Generational Dynamics of Lifelong Learning. British Journal of Educational Studies, 61(1), 109-119. https://doi.org/10.1080/00071005.2012.756172
  16. Franceschini, F. & Maisano, D. (2011). Criticism on the hg-index. Scientometrics, 86(2), 339-346. https://doi.org/10.1007/s11192-010-0261-1
  17. Gaddis, S.M. & Lauen, D.L. (2014). School accountability and the black-white test score gap. Social Science Research, (44), 15-31. https://doi.org/10.1016/j.ssresearch.2013.10.008
  18. Goldthorpe, J. H. (2010). De la sociología. Números, narrativas e integración de la investigación y la teoría. CIS.
  19. Kavita, A. & Parkash, V. (2019). Educational inequality in haryana: A study of gender differences in learning. Journal of Sociology and Social Anthropology, 10(1-3), 111-120. https://doi.org/10.31901/24566764.2019/10-1-3.298
  20. Kelley, J. (1974). The Politics of School Busing. Public Opinion Quarterly, 38(1), 23. https://doi.org/10.1086/268132
  21. Kelly, S. (2008). Race, social class, and student engagement in middle school English classrooms. Social Science Research, 37(2), 434-448. https://doi.org/10.1016/j.ssresearch.2007.08.003
  22. Li, L., Liu, Y., Zhu, H., Ying, S., Luo, Q., Luo, H., Kuai, X., Xia, H. & Shen, H. (2017). A bibliometric and visual analysis of global geo-ontology research. Computers and Geosciences, (99), 1-8. https://doi.org/10.1016/j.cageo.2016.10.006
  23. López-Herrera, A.G., Cobo, M.J., Herrera-Viedma, E., Herrera, F., Bailón-Moreno, R. & Jiménez-Contreras, E. (2009). Visualization and evolution of the scientific structure of fuzzy sets research in Spain. Information Research, 14(4), 1-20.
  24. Martínez, M.A., Cobo, M.J., Herrera, M. & Herrera-Viedma, E. (2015). Analyzing the Scientific Evolution of Social Work Using Science Mapping. Research on Social Work Practice, 25(2), 257-277. https://doi.org/10.1177/1049731514522101
  25. Matějů, P. & Simonová, N. (2013). Who is shortchanged in school: Boys or girls? Gender gaps in skills, grading and educational aspirations among pupils of 9th grade of elementary schools [Koho znevýhodňuje škola: chlapce, nebo dívky? Rozdíly v dovednostech, školních výsledcích a vzdìlanostních aspiracích dívek a chlapců devátých tříd základních škol]. Orbis Scholae, 7(3), 107-138.
  26. Matějů, P. & Smith, M.L. (2015). Are boys that bad? Gender gaps in measured skills, grades and aspirations in Czech elementary schools. British Journal of Sociology of Education, 36(6), 871-895. https://doi.org/10.1080/01425692.2013.874278
  27. Nerur, S.P., Rasheed, A.A. & Natarajan, V. (2008). The intellectual structure of the strategic management field: An author co-citation analysis. Strategic Management Journal, 29(3), 319-336. https://doi.org/10.1002/smj.659
  28. Neumuth, T., Loebe, F. & Jannin, P. (2012). Similarity metrics for surgical process models. Artificial Intelligence in Medicine, 54(1), 15-27. https://doi.org/10.1016/j.artmed.2011.10.001
  29. Núñez, P. & Litichever, L. (2016). Being young in secondary- school: Temporalities and meanings of school experiences in Argentina [Ser joven en la escuela: Temporalidades y sentidos de la experiencia escolar en la Argentina]. Psicoperspectivas, 15(2), 90-101. https://doi.org/10.5027/PSICOPERSPECTIVAS-VOL15-ISSUE2-FULLTEXT-854
  30. Olk, T. (2016). Educational landscapes and the reduction of socio-spatial educational inequality in the city. Education, Space and Urban Planning: Education as a Component of the City, (7), 233-240. https://doi.org/10.1007/978-3-319-38999-8_22
  31. Pilkington, A., & Meredith, J. (2009). The evolution of the intellectual structure of operations management-1980-2006: A citation/co-citation analysis. Journal of Operations Management, 27(3), 185-202. https://doi.org/10.1016/j.jom.2008.08.001
  32. Ram, R. (1984). Population increase, economic growth, educational inequality, and income distribution. Some recent evidence. Journal of Development Economics, 14(3), 419-428. https://doi.org/10.1016/0304-3878(84)90069-5
  33. Ramos-Rodríguez, A.-R., & Ruiz-Navarro, J. (2004). Changes in the intellectual structure of strategic management research: A bibliometric study of the Strategic Management Journal, 1980-2000. Strategic Management Journal, 25(10), 981-1004. https://doi.org/10.1002/smj.397
  34. Rotolo, D., Rafols, I., Hopkins, M.M. & Leydesdorff, L. (2017). Strategic intelligence on emerging technologies: Scientometric overlay mapping. Journal of the Association for Information Science and Technology, 68(1), 214-233. https://doi.org/10.1002/asi.23631
  35. Schimpl-Neimanns, B. (2000). Social origin and educational participation. Empirical analyses of educational inequality by social origin from 1950 to 1989 [Soziale herkunft und bildungsbeteiligung. Empirische analysen zu herkunftsspezifischen bildungsungleichheiten zwischen 1950 und 1989] Kolner Zeitschrift fur Soziologie und Sozialpsychologie, 52(4), 636-669.
  36. Schulz, W., Schunck, R., Diewald, M. & Johnson, W. (2017). Pathways of Intergenerational Transmission of Advantages during Adolescence: Social Background, Cognitive Ability, and Educational Attainment. Journal of Youth and Adolescence, 46(10), 2194-2214. https://doi.org/10.1007/s10964-017-0718-0
  37. Seabra, T. (2009). Educational inequalities and social inequalities [Desigualdades escolares e desigualdades sociais]. Sociologia, Problemas e Praticas, (59), 75-106.
  38. Tomul, E. (2009). Measuring regional inequality of education in Turkey: an evaluation by Gini index. Procedia - Social and Behavioral Sciences, 1(1), 949-952. https://doi.org/10.1016/j.sbspro.2009.01.168
  39. Van De Werfhorst, H.G. & Mijs, J.J.B. (2007). Achievement inequality and the institutional structure of educational systems: A comparative perspective. Annual Review of Sociology, (36), 407-428. https://doi.org/10.1146/annurev.soc.012809.102538
  40. Verwiebe, R. & Riederer, B. (2013). The reading literacy of immigrant youth in western societies: A multilevel analysis based on PISA 2000 to 2009 [Die Lesekompetenzen von Jugendlichen mit Migrationshintergrund in westlichen Gesellschaften: Eine Mehrebenenanalyse auf Basis der PISA-Studie von 2000 bis 2009]. Zeitschrift fur Soziologie, 42(3), 201-221.
  41. White, H.D. & Griffith, B.C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for Information Science, 32(3), 163-171. https://doi.org/10.1002/asi.4630320302