Issue
Copyright (c) 2021 Ivan David Lozada-Martinez, Maria Paz Bolaño-Romero
This work is licensed under a Creative Commons Attribution 4.0 International License.
Youth and cardiovascular health: What risk factors should we take into account to intervene?
Corresponding Author(s) : Ivan David Lozada-Martinez
Ciencia e Innovación en Salud,
2021
Abstract
Background: Acute myocardial infarction is currently the leading cause of early mortality worldwide, with an increase in the incidence and prevalence of this entity in recent years among younger people, specifically, those under 40 years of age. The presence of traditional cardiovascular risk factors in young adults has the same prediction of mortality from atherosclerotic coronary artery disease compared to older adults. Methods: A non-systematic review of the literature was carried out, using search terms such as "Cardiovascular Risk" and "Youth", as well as synonyms, which were combined with the operators "AND" and "OR", in the databases PubMed, ScienceDirect, Embase, EBSCO, and MEDLINE. Results: It is necessary to recognize and mitigate the presence of risk factors in young adults in a systematic and precise manner, not only focusing on the group of traditional factors (smoking, dyslipidemia, central obesity, arterial hypertension, diabetes mellitus, hyperglycemic/hypersodic diet, irregular or no physical activity), of which smoking and dyslipidemia have shown the greatest negative impact, but also emerging factors (chronic stress, consumption of energy drinks, consumption of psychoactive substances), the most important of which is the consumption of psychoactive substances, with cocaine as a key factor. Conclusions: The fact that cardiometabolic diseases are disproportionately increasing in incidence, presenting at younger and younger ages, makes it necessary to change the actual approach observed in day-to-day clinical practice.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Arora S, Stouffer GA, Kucharska-Newton A, Qamar A, Vaduganathan M, Pandey A, et al. Twenty Year Trends and Sex Differences in Young Adults Hospitalized with Acute Myocardial Infarction: The ARIC Community Surveillance Study. Circulation. 2019; 139(8):1047-1056. https://pubmed.ncbi.nlm.nih.gov/30586725/
- Gupta A, Wang Y, Spertus JA, Geda M, Lorenze N, Nkonde-Price C, et al. Trends in acute myocardial infarction in young patients and differences by sex and race, 2001 to 2010. J Am Coll Cardiol. 2014; 64(4): 337-345. https://pubmed.ncbi.nlm.nih.gov/25060366/
- Naghavi M, Abajobir A, Abbafati C, Abbas K, Abd-Allah F, Abera S, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980- 2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017; 390:1151-1210. https://pubmed.ncbi.nlm.nih.gov/28919116/
- Shah N, Kelly AM, Cox N, Wong C, Soon K. Myocardial Infarction in the "Young": Risk Factors, Presentation, Management and Prognosis. Heart Lung Circ. 2016; 25(10):955-960. https://pubmed.ncbi.nlm.nih.gov/27265644/
- Yang J, Biery D, Singh A, Divakaran S, DeFilippis E, Wu W, et al. Risk Factors and Outcomes of Very Young Adults Who Experience Myocardial Infarction: The Partners YOUNG-MI Registry. Am J Med. 2019; S0002-9343(19)30962-3. https://pubmed.ncbi.nlm.nih.gov/31715169/
- García-Redondo AB, Aguado A, Briones AM, Salaices M. NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res. 2016; 114:110-20. https://pubmed.ncbi.nlm.nih.gov/27773825/
- Rodrigues-Díez R, Salaices M. Factores de riesgo cardiovascular y estrés oxidativo en jóvenes. Clin Investig Arterioscler. 2017; 29(5):216-217. https://www.sciencedirect.com/science/article/abs/pii/S021491681730102X
- Allen NB, Siddique J, Wilkins JT, Shay C, Lewis CE, Goff DC, et al. Blood pressure trajectories in early adulthood and subclinical atherosclerosis in middle age. JAMA 2014; 311(5):490–7. https://pubmed.ncbi.nlm.nih.gov/24496536/
- Pletcher MJ, Bibbins-Domingo K, Lewis CE, Wei GS, Sidney S, Carr JJ, et al. Prehypertension during young adulthood and coronary calcium later in life. Ann Intern Med. 2008; 149(2):91–9. https://pubmed.ncbi.nlm.nih.gov/18626048/
- Pletcher MJ, Bibbins-Domingo K, Liu K, Sidney S, Lin F, Vittinghoff E, et al. Nonoptimal lipids commonly present in young adults and coronary calcium later in life: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Ann Intern Med. 2010; 153(3):137–46. https://pubmed.ncbi.nlm.nih.gov/20679558/
- Gray L, Lee IM, Sesso HD, Batty GD. Blood pressure in early adulthood, hypertension in middle age, and future cardiovascular disease mortality: HAHS (Harvard Alumni Health Study). J Am Coll Cardiol. 2011; 58(23):2396–403. https://pubmed.ncbi.nlm.nih.gov/22115646/
- Navar-Boggan AM, Peterson ED, D’Agostino RB, Neely B, Sniderman AD, Pencina MJ. Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation 2015; 131(5):451–8. https://pubmed.ncbi.nlm.nih.gov/25623155/
- Pletcher MJ, Vittinghoff E, Thanataveerat A, Bibbins-Domingo K, Moran AE. Young adult exposure to cardiovascular risk factors and risk of events later in life: the Framingham Offspring study. PLoS One. 2016; 11(5):e0154288. https://pubmed.ncbi.nlm.nih.gov/27138014/
- Stamler J, Daviglus ML, Garside DB, Dyer AR, Greenland P, Neaton JD. Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. JAMA. 2000; 284(3):311–8. https://pubmed.ncbi.nlm.nih.gov/10891962/
- Seshadri S, Wolf PA, Beiser A, Vasan RS, Wilson PW, Kase CS et al. Elevated midlife blood pressure increases stroke risk in elderly persons: the Framingham Study. Arch Intern Med. 2001; 161(19):2343–50. https://pubmed.ncbi.nlm.nih.gov/11606150/
- O'Toole J, Gibson I, Flaherty G. Young Adults’ Perception of Cardiovascular Disease Risk. The Journal for Nurse Practitioners. 2019; 15(10): e197-e200. https://www.sciencedirect.com/science/article/abs/pii/S1555415519301758
- Franz CA, Frishman WH. Marijuana Use and Cardiovascular Disease. Cardiol Rev. 2016; 24(4): 158–162. https://pubmed.ncbi.nlm.nih.gov/26886465/
- Huang RC, Song XT, Zhang DF, Xu JY, Boehmer KR, Leppin AA, et al. Preferences and attitudes of young Chinese clinicians about using a shared decision making tools for communicating cardiovascular risk. Chronic Dis Transl Med. 2019; 5(2):105-112. https://pubmed.ncbi.nlm.nih.gov/31367699/
- Richards JR, Garber D, Laurin EG, Albertson TE, Derlet RW, Amsterdam EA, et al. Treatment of cocaine cardiovascular toxicity: a systematic review. Clin Toxicol (Phila). 2016; 54(5):345-364. https://pubmed.ncbi.nlm.nih.gov/26919414/
- Ehlers A, Marakis G, Lampen A, Hirsch-Ernst KI. Risk assessment of energy drinks with focus on cardiovascular parameters and energy drink consumption in Europe. Food Chem Toxicol. 2019; 130:109–121. https://pubmed.ncbi.nlm.nih.gov/31112702/
- Havakuk O, Rezkalla SH, Kloner RA. The Cardiovascular Effects of Cocaine. J Am Coll Cardiol. 2017; 70(1):101-113. https://www.sciencedirect.com/science/article/pii/S0735109717373321
- Kivimäki M, Steptoe A. Effects of stress on the development and progression of cardiovascular disease. Nat Rev Cardiol. 2018; 15(4):215-229. https://pubmed.ncbi.nlm.nih.gov/29213140/
- Pacher P, Steffens S, Haskó G, Schindler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol. 2018; 15(3):151-166. https://pubmed.ncbi.nlm.nih.gov/28905873/
- Talarico GP, Crosta ML, Giannico MB, Summaria F, Calò L, Patrizi R. Cocaine and coronary artery diseases: a systematic review of the literature. J Cardiovasc Med. 2017; 18(5):291–294. https://pubmed.ncbi.nlm.nih.gov/28306693/
- Navas-Nacher EL, Colangelo L, Beam C, Greenland P. Risk factors for coronary heart disease in men 18 to 39 years of age. Ann Intern Med. 2001; 134(6):433-9. https://pubmed.ncbi.nlm.nih.gov/11255518/
- Daviglus ML, Stamler J, Pirzada A, Yan LL, Garside DB, Liu K, et al. Favorable cardiovascular risk profile in young women and long-term risk of cardiovascular and all-cause mortality. JAMA. 2004; 292(13):1588-92. https://pubmed.ncbi.nlm.nih.gov/15467061/
- Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004; 364(9438):937-952. https://pubmed.ncbi.nlm.nih.gov/15364185/
- Gulati R, Behfar A, Narula J, Kanwar A, Lerman A, Cooper L, et al. Acute Myocardial Infarction in Young Individuals. Mayo Clin Proc. 2020; 95(1):136-156. https://www.sciencedirect.com/science/article/pii/S0025619619304215
- Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003; 108(14):1664-1672. https://pubmed.ncbi.nlm.nih.gov/14530185/
- Towfighi A, Markovic D, Ovbiagele B. National gender-specific trends in myocardial infarction hospitalization rates among patients aged 35 to 64 years. Am J Cardiol. 2011; 108(8):1102-1107. https://pubmed.ncbi.nlm.nih.gov/21816380/
- Izadnegahdar M, Singer J, Lee MK, Gao M, Thompson CR, Kopec J, et al. Do younger women fare worse? sex differences in acute myocardial infarction hospitalization and early mortality rates over ten years. J Womens Health (Larchmt). 2014; 23(1):10-17. https://pubmed.ncbi.nlm.nih.gov/24206026/
- Cole JH, Miller 3rd JI, Sperling LS, Weintraub WS. Long-term follow-up of coronary artery disease presenting in young adults. J Am Coll Cardiol. 2003; 41(4):521e8. https://pubmed.ncbi.nlm.nih.gov/12598059/
- Aggarwal A, Srivastava S, Velmurugan M. Newer perspectives of coronary artery disease in young. World J Cardiol. 2016; 8(12):728–734. https://pubmed.ncbi.nlm.nih.gov/28070240/
- Klein LW, Nathan S. Coronary artery disease in young adults. J Am Coll Cardiol. 2003; 41(4):529-31. https://www.onlinejacc.org/content/41/4/529
- Jaeger BR, Richter Y, Nagel D, Heigl F, Vogt A, Roeseler E, et al. Longitudinal cohort study on the effectiveness of lipid apheresis treatment to reduce high lipoprotein(a) levels and prevent major adverse coronary events. Nat Clin Pract Cardiovasc Med. 2009; 6(3):229e39. https://pubmed.ncbi.nlm.nih.gov/19234501/
- Leebmann J, Roeseler E, Julius U, Heigl F, Spitthoever R, Heutling D, et al. Lipoprotein apheresis in patients with maximally tolerated lipid-lowering therapy, lipoprotein(a)-hyperlipoproteinemia, and progressive cardiovascular disease: prospective observational multicenter study. Circulation. 2013; 128(24):2567e76. https://pubmed.ncbi.nlm.nih.gov/24056686/
- von Dryander M, Fischer S, Passauer J, Muller G, Bornstein SR, Julius U. Differences in the atherogenic risk of patients treated by lipoprotein apheresis according to their lipid pattern. Atherosclerosis Suppl. 2013; 14(1):39e44. https://pubmed.ncbi.nlm.nih.gov/23357139/
- Erqou S, Kaptoge S, Perry PL, Di Angelantonio E, Thompson A, White IR, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009; 302(4):412e23. https://pubmed.ncbi.nlm.nih.gov/19622820/
- Nordestgaard BG, Chapman MJ, Ray K, Boren J, Andreotti F, Watts GF, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010; 31(23):2844e53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295201/
- Lamon-Fava S, Marcovina SM, Albers JJ, Kennedy H, Deluca C, White CC, et al. Lipoprotein(a) levels, apo(a) isoform size, and coronary heart disease risk in the Framingham Offspring Study. J Lipid Res. 2011; 52(6):1181e7. https://pubmed.ncbi.nlm.nih.gov/21478162/
- Tselmin S, Muller G, Gelgaft E, Fischer S, Julius U. An elevated lipoprotein(a) plasma level as a cardiovascular risk factor. Atherosclerosis Suppl. 2015; 18: 257e62. https://pubmed.ncbi.nlm.nih.gov/25936334/
- Nordestgaard BG, Langsted A. Lipoprotein (a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology. J Lipid Res. 2016; 57:1953–75. https://pubmed.ncbi.nlm.nih.gov/27677946/
- Havel JH, Kane JP. Introduction: structure and metabolism of plasma lipoproteins. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The Metabolic & Molecular Bases of Inherited Disease. 8th edition. New York: Mcgraw-Hill, 2001:2705–16.
- Kronenberg F, Utermann G. Lipoprotein(a): resurrected by genetics. J Intern Med 2013; 273: 6–30. https://pubmed.ncbi.nlm.nih.gov/22998429/
- Romagnuolo R, Marcovina SM, Boffa MB, Koschinsky ML. Inhibition of plasminogen activation by apo(a): role of carboxyl-terminal lysines and identification of inhibitory domains in apo(a). J lipid research. 2014; 55:625–34. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966697/
- Langsted A, Kamstrup PR, Nordestgaard BG. High lipoprotein(a) and low risk of major bleeding in brain and airways in the general population: a Mendelian randomization study. Clin Chem. 2017; 63: 1714–23. https://pubmed.ncbi.nlm.nih.gov/28877919/
- Langsted A, Nordestgaard BG, Kamstrup PR. Elevated Lipoprotein(a) and Risk of Ischemic Stroke. J Am Coll Cardiol. 2019; 74(1):54-66. https://pubmed.ncbi.nlm.nih.gov/31272552/
- Schatz U, Fischer S, Müller G, Tselmin S, Birkenfeld AL, Julius U, et al. Cardiovascular risk factors in patients with premature cardiovascular events attending the University of Dresden Lipid Clinic. Atheroscler Suppl. 2019; 40:94-99. https://pubmed.ncbi.nlm.nih.gov/31818455/
- Williams B, Mancia G, Spiering W, Agabiti E, Azizi M, Burnier M, et al. Guía ESC/ESH 2018 sobre el diagnóstico y tratamiento de la hipertensión arterial. Rev Esp Cardiol. 2019; 72(2):160.e1-e78. https://www.revespcardiol.org/es-guia-esc-esh-2018-sobre-el-articulo-S0300893218306791
- Mach F, Baigent C, Catapano A, Koskinas K, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for themanagement of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020; 41(1):111-188. https://pubmed.ncbi.nlm.nih.gov/31504418/
- Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020; 41(3):407-477. https://pubmed.ncbi.nlm.nih.gov/31504439/
- Escobar C, Anguita M, Arrarte V, Barrios V, Cequier A, Cosín-Sales J, et al. Recomendaciones para mejorar el control lipídico. Documento de consenso de la Sociedad Española de Cardiología. Rev Esp Cardiol. 2020; 73(2):161–167. https://www.sciencedirect.com/science/article/abs/pii/S0300893219303690
- American Diabetes Association. Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020; 43(S1):1-207. https://care.diabetesjournals.org/content/43/Supplement_1
- Kivimäki M, Kawachi I. Work Stress as a Risk Factor for Cardiovascular Disease. Curr Cardiol Rep. 2015; 17(9):74. https://pubmed.ncbi.nlm.nih.gov/26238744/
- Dragano N, Siegrist S, Nyberg S, Lunau T, Fransson E, Alfredsson L, et al. Effort–Reward Imbalance at Work and Incident Coronary Heart Disease: A Multicohort Study of 90,164 Individuals. Epidemiology. 2017; 28(4):619–626. https://pubmed.ncbi.nlm.nih.gov/28570388/
- Kivimäki M, Jokela M, Nyberg ST, Singh-Manoux A, Fransson EI, Alfredsson L, et al. Long working hours and risk of coronary heart disease and stroke: a systematic review and meta-analysis of published and unpublished data for 603,838 individuals. Lancet. 2015; 386(10005):1739-46. https://pubmed.ncbi.nlm.nih.gov/26298822/
- Huang Y, Xu S, Hua J, Zhu D, Liu C, Hu Y, et al. Association between job strain and risk of incident stroke: A meta-analysis. Neurology. 2015; 85(19):1648-54. https://pubmed.ncbi.nlm.nih.gov/26468409/
- Nyberg ST, Fransson EI, Heikkilä K, Ahola K, Alfredsson L, Bjorner JB, et al. Job strain as a risk factor for type 2 diabetes: a pooled analysis of 124,808 men and women. Diabetes Care. 2014; 37(8):2268-75. https://pubmed.ncbi.nlm.nih.gov/25061139/
- Ferrie JE, Virtanen M, Jokela M, Madsen IEH, Heikkilä K, Alfredsson L, et al. Job insecurity and risk of diabetes: a meta-analysis of individual participant data. CMAJ. 2016; 188(17-18):E447-E455. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135521/
- Hackett RA, Steptoe A. Type 2 diabetes mellitus and psychological stress - a modifiable risk factor. Nat Rev Endocrinol. 2017; 13(9):547-560. https://pubmed.ncbi.nlm.nih.gov/28664919/
- Madsen IEH, Nyberg ST, Magnusson Hanson LL, Ferrie JE, Ahola K, Alfredsson L, et al. Job strain as a risk factor for clinical depression: systematic review and meta-analysis with additional individual participant data. Psychol Med. 2017; 47(8):1342-1356. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471831/
- Heikkilä K, Nyberg ST, Theorell T, Fransson EI, Alfredsson L, Bjorner JB, et al. Work stress and risk of cancer: meta-analysis of 5700 incident cancer events in 116,000 European men and women. BMJ. 2013; 346:f165. https://pubmed.ncbi.nlm.nih.gov/23393080/
- Heikkila K, Nyberg ST, Madsen IE, de Vroome E, Alfredsson L, Bjorner JJ, et al. Long working hours and cancer risk: a multi-cohort study. Br J Cancer. 2016; 114(7):813-8. https://pubmed.ncbi.nlm.nih.gov/26889978/
- Heikkilä K, Madsen IE, Nyberg ST, Fransson EI, Ahola K, Alfredsson L, et al. Job strain and the risk of inflammatory bowel diseases: individual-participant meta-analysis of 95,000 men and women. PLoS One. 2014; 9(2):e88711. https://pubmed.ncbi.nlm.nih.gov/24558416/
- Steptoe A, Kivimäki M. Stress and cardiovascular disease. Nat Rev Cardiol. 2012; 9(6):360–370. https://pubmed.ncbi.nlm.nih.gov/22473079/
- Orth-Gomér K, Wamala SP, Horsten M, Schenck-Gustafsson K, Schneiderman N, Mittleman MA.. Marital stress worsens prognosis in women with coronary heart disease: The Stockholm Female Coronary Risk Study. JAMA. 2000; 284(23):3008–3014. https://pubmed.ncbi.nlm.nih.gov/11122587/
- Lee S, Colditz GA, Berkman LF, Kawachi I. Caregiving and risk of coronary heart disease in U. S. women: a prospective study. Am J Prev Med. 2003; 24(2):113–119. https://pubmed.ncbi.nlm.nih.gov/12568816/
- Carey IM, Shah SM, DeWilde S, Harris T, Victor CR, Cook DG. Increased risk of acute cardiovascular events after partner bereavement: a matched cohort study. JAMA Intern Med. 2014; 174(4):598–605. https://pubmed.ncbi.nlm.nih.gov/24566983/
- Kario K, McEwen BS, Pickering TG. Disasters and the heart: a review of the effects of earthquake-induced stress on cardiovascular disease. Hypertens Res. 2013; 26(5):355–367. https://pubmed.ncbi.nlm.nih.gov/12887126/
- Qureshi EA, Merla V, Steinberg J, Rozanski A. Terrorism and the heart: implications for arrhythmogenesis and coronary artery disease. Card Electrophysiol Rev. 2003; 7(1):80–84. https://pubmed.ncbi.nlm.nih.gov/12766525/
- Valtorta NK, Kanaan M, Gilbody S, Ronzi S, Hanratty B. Loneliness and social isolation as risk factors for coronary heart disease and stroke: systematic review and meta-analysis of longitudinal observational studies. Heart. 2016; 102(13):1009–1016. https://pubmed.ncbi.nlm.nih.gov/27091846/
- Fransson EI, Nyberg ST, Heikkilä K, Alfredsson L, Bjorner JB, Borritz M, et al. Job strain and the risk of stroke: an individual-participant data meta-analysis. Stroke. 2015; 46(2):557–559. https://pubmed.ncbi.nlm.nih.gov/25563644/
- Hughes K, Bellis MA, Hardcastle KA, Sethi D, Butchart A, Mikton C, et al. The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. Lancet Public Health. 2017; 2(8):e356–366. https://pubmed.ncbi.nlm.nih.gov/29253477/
- Li J, Zhang M, Loerbroks A, Angerer P, Siegrist J. Work stress and the risk of recurrent coronary heart disease events: a systematic review and meta-analysis. Int J Occup Med Environ Health. 2015; 28(1):8–19. https://pubmed.ncbi.nlm.nih.gov/26159942/
- Arnold SV, Smolderen KG, Buchanan DM, Li Y, Spertus JA. Perceived stress in myocardial infarction: long-term mortality and health status outcomes. J Am Coll Cardiol. 2012; 60(18):1756–1763. https://pubmed.ncbi.nlm.nih.gov/23040574/
- Wilbert-Lampen U, Leistner D, Greven S, Pohl T, Sper S, Völker C, et al. Cardiovascular events during World Cup soccer. N Engl J Med. 2008; 358(5):475–483. https://pubmed.ncbi.nlm.nih.gov/18234752/
- Stewart R, Colquhoun D, Marschner S, Kirby A, Simes J, Nestel P, et al. Persistent psychological distress and mortality in patients with stable coronary artery disease. Heart. 2017; 103(23):1860-1866. https://pubmed.ncbi.nlm.nih.gov/28652315/
- Wei J, Rooks C, Ramadan R, Shah AJ, Bremner JD, Quyyumi AA, et al. Meta-analysis of mental stress-induced myocardial ischemia and subsequent cardiac events in patients with coronary artery disease. Am J Cardiol. 2014; 114(2):187-92. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126399/
- Brotman DJ, Golden SH, Wittstein IS. The cardiovascular toll of stress. Lancet. 20017; 370(9592):1089–1100. https://pubmed.ncbi.nlm.nih.gov/17822755/
- Steptoe A, Kivimäki M. Stress and cardiovascular disease: an update on current knowledge. Annu Rev Public Health. 2013; 34:337–354. https://pubmed.ncbi.nlm.nih.gov/23297662/
- Fleshner M, Crane CR. Exosomes, DAMPs and miRNA: features of stress physiology and immune homeostasis. Trends Immunol. 2017; 38(10):768–776. https://pubmed.ncbi.nlm.nih.gov/28838855/
- Winhusen T, Theobald J, Kaelber DC, Lewis D. The association between regular cannabis use, with and without tobacco co-use, and adverse cardiovascular outcomes: cannabis may have a greater impact in non-tobacco smokers. Am J Drug Alcohol Abuse. 2019; 19:1-8. https://pubmed.ncbi.nlm.nih.gov/31743053/
- Greger J, Bates V, Mechtler L, Gengo F. A Review of Cannabis and Interactions With Anticoagulant and Antiplatelet Agents. J Clin Pharmacol. 2020; 60(4):432-438. https://pubmed.ncbi.nlm.nih.gov/31724188/
- Palatini P, Fania C, Mos L, Mazzer A, Saladini F, Casiglia E. Alcohol Intake More than Doubles the Risk of Early Cardiovascular Events in Young Hypertensive Smokers. Am J Med. 2017; 130(8):967-974.e1. https://pubmed.ncbi.nlm.nih.gov/28366424/
- Keyhani S, Steigerwald S, Ishida J, Vali M, Cerda M, Hasin D, et al. Risks and benefits of Marijuana use: A National survey of U.S. adults. Ann Intern Med. 2018; 169:282–90. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157909/
- Hasin DS. US epidemiology of cannabis use and associated problems. Neuropsychopharmacology. 2018; 43:195–212. https://pubmed.ncbi.nlm.nih.gov/28853439/
- Abrams DI. The therapeutic effects of Cannabis and cannabinoids: An update from the National Academies of Sciences, Engineering and Medicine report. Eur J Intern Med. 2018; 49:7-11. https://pubmed.ncbi.nlm.nih.gov/29325791/
- Beaconsfield P, Ginsburg J, Rainsbury R. Marihuana smoking. Cardiovascular effects in man and possible mechanisms. N Engl J Med. 1972; 287(5):209-12. https://pubmed.ncbi.nlm.nih.gov/4402574/
- Rezkalla S, Kloner RA. Cardiovascular effects of marijuana. Trends Cardiovasc Med. 2019; 29(7):403-407. https://pubmed.ncbi.nlm.nih.gov/30447899/
- Mason EK, Gak AE, Finno JG, Cannon RD, Jacoby JL. Thoracic Aortic Dissection Associated with Marijuana Use. J Emerg Med. 2019; 57(2):235-237. https://pubmed.ncbi.nlm.nih.gov/31126675/
- Pacher P, Mukhopadhyay P, Mohanraj R, Godlewski G, Bátkai S, Kunos G. Modulation of the endocannabinoid system in cardiovascular disease: therapeutic potential and limitations. Hypertension. 2008; 52(4):601–607. https://pubmed.ncbi.nlm.nih.gov/18779440/
- Montecucco F, Lenglet S, Braunersreuther V, Burger F, Pelli G, Bertolotto M, et al. CB2 cannabinoid receptor activation is cardioprotective in a mouse model of ischemia/reperfusion. J Mol Cell Cardiol. 2009; 46(5):612–620. https://pubmed.ncbi.nlm.nih.gov/19162037/
- Mukhopadhyay P, Bátkai S, Rajesh M, Czifra N, Harvey-White J, Haskó G, et al. Pharmacological inhibition of CB1 cannabinoid receptor protects against doxorubicin-induced cardiotoxicity. J Am Coll Cardiol. 2007; 50(6):528–536. https://pubmed.ncbi.nlm.nih.gov/17678736/
- Slavic S, Lauer D, Sommerfeld M, Kemnitz UR, Grzesiak A, Trappiel M, et al. Cannabinoid receptor 1 inhibition improves cardiac function and remodelling after myocardial infarction and in experimental metabolic syndrome. J Mol Med (Berl). 2013; 91(7):811–823. https://pubmed.ncbi.nlm.nih.gov/23636507/
- Schaich CL, Shaltout HA, Brosnihan KB, Howlett AC, Diz DI. Acute and chronic systemic CB1 cannabinoid receptor blockade improves blood pressure regulation and metabolic profile in hypertensive (mRen2)27 rats. Physiol Rep. 2014; 2(8):e12108. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246581/
- Cornish JW, O'Brien CP. Crack cocaine abuse: An epidemic with many public health consequences. Annu Rev Public Health. 1996; 17:259–273. https://pubmed.ncbi.nlm.nih.gov/8724227/
- Kim ST, Park T. Acute and Chronic Effects of Cocaine on Cardiovascular Health. Int J Mol Sci. 2019; 20(3):pii: E584. https://pubmed.ncbi.nlm.nih.gov/30700023/
- European Drug Report 2014: Trends and developments. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). 2015. Disponible en: http://www.emcdda.europa.eu/publications/edr/trends-developments/2014_en
- Carrillo X, Vilalta V, Cediel G, Fernandez-Nofrerias E, Rodriguez-Leor O, Mauri J, et al. Trends in prevalence and outcomes of acute coronary syndrome associated with cocaine consumption: The RUTI-cocaine study. Int J Cardiol. 2019; 15:283:23-27. https://pubmed.ncbi.nlm.nih.gov/30595359/
- Lange RA, Cigarroa RG, Yancy CW Jr, Willard JE, Popma JJ, Sills MN, et al. Cocaine-induced coronary artery vasoconstriction. N Engl J Med. 1989; 321(23):1557–1562. https://pubmed.ncbi.nlm.nih.gov/2573838/
- Benzaquen BS, Cohen V, Eisenberg MJ. Effects of cocaine on the coronary arteries. Am Heart J. 2001; 142(3):402–410. https://pubmed.ncbi.nlm.nih.gov/11526352/
- Davies O, Ajayeoba O, Kurian D. Coronary artery spasm: an often overlooked diagnosis. Niger Med J. 2014; 55(44):356–358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124553/
- Lucena J, Blanco M, Jurado C, Rico A, Salguero M, Vazquez R, et al. Cocaine-related sudden death: a prospective investigation in south-west Spain. Euro Heart J. 2010; 31(3):318–329. https://pubmed.ncbi.nlm.nih.gov/20071326/
- O'Keefe JH, Bhatti SK, Bajwa A, DiNicolantonio JJ, Lavie CJ. Alcohol and cardiovascular health: the dose makes the poison…or the remedy. Mayo Clin Proc. 2014; 89(3):382-93. https://pubmed.ncbi.nlm.nih.gov/24582196/
- World Health Organization Management of Substance Abuse Team. Global Status Report on Alcohol and Health. 2011 [Internet]. World Health Organization; 2018 [Citado el 14 de marzo de 2020]. Disponible en: https://www.who.int/substance_abuse/publications/alcohol_2011/en/
- Mostofsky E, Chahal HS, Mukamal KJ, Rimm EB, Mittleman MA. Alcohol and Immediate Risk of Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis. Circulation. 2016; 133(10):979-87. https://pubmed.ncbi.nlm.nih.gov/26936862/
- Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y, Patra J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet. 2009; 373(9682):2223-2233. https://pubmed.ncbi.nlm.nih.gov/19560604/
- Damen JA, Hooft L, Schuit E, Debray TP, Collins GS, Tzoulaki I, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ. 2016; 16;353:i2416. https://pubmed.ncbi.nlm.nih.gov/27184143/
- Zucconi S, Volpato C, Adinolfi F, Gandini E, Gentile E, Loi A, et al. Gathering consumption data on specific consumer groups of energy drinks. EFSA Supporting Publications. 2013; 10(3):1-190. https://www.efsa.europa.eu/en/supporting/pub/en-394
- McLellan TM, Lieberman HR. Do energy drinks contain active components other than caffeine?. Nutr Rev. 2012; 70(12):730-44. https://pubmed.ncbi.nlm.nih.gov/23206286/
- Gunja N, Brown JA. Energy drinks: health risks and toxicity. Med J Aust. 2012; 196(1):46–149. https://pubmed.ncbi.nlm.nih.gov/22256934/
- Wikoff D, Welsh BT, Henderson R, Brorby GP, Britt J, Myers E, et al. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem Toxicol. 2017; 109(Pt 1):585-648. https://www.sciencedirect.com/science/article/pii/S0278691517301709
- Nawrot P, Jordan S, Eastwood J, Rotstein J, Hugenholtz A, Feeley M. Effects of caffeine on human health. Food Addit Contam. 2003; 20(1):1-30. https://pubmed.ncbi.nlm.nih.gov/12519715/
- European Food Safety Authority. Scientific Opinion on the substantiation of health claims related to caffeine and increase in physical performance during short-term high-intensity exercise (ID 737, 1486, 1489), increase in endurance performance (ID 737, 1486), increase in endurance capacity (ID 1488) and reduction in the rated perceived exertion/effort during exercise (ID 1488, 1490) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal. 2011; 9(4):2053. https://www.efsa.europa.eu/en/efsajournal/pub/2053
- Ferré S. An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem. 2008; 105(4):1067-79. https://pubmed.ncbi.nlm.nih.gov/18088379/
- Ferré S. Role of the central ascending neurotransmitter systems in the psychostimulant effects of caffeine. J Alzheimers Dis. 2010; 20 Suppl 1:S35-49. https://pubmed.ncbi.nlm.nih.gov/20182056/
- Doerner JM, Kuetting DL, Luetkens JA, Naehle CP, Dabir D, Homsi R, et al. Caffeine and taurine containing energy drink increases left ventricular contractility in healthy volunteers. Int J Cardiovasc Imaging. 2015; 31(3):595-601. https://pubmed.ncbi.nlm.nih.gov/25425431/
- Bakker AJ, Berg HM. Effect of taurine on sarcoplasmic reticulum function and force in skinned fast-twitch skeletal muscle fibres of the rat. J Physiol. 2002; 538(Pt 1):185-94. https://pubmed.ncbi.nlm.nih.gov/11773327/
- European Food Safety Authority. Scientific Opinion on the safety and efficacy of inositol as a feed additive for fish, dogs and cats. EFSA Journal. 2014; 12(5):3671. https://www.efsa.europa.eu/en/efsajournal/pub/3671
- Red Bull. Ingredientes de Red Bull Energy Drink [Internet]. Austria: Red Bull; 2019 [Citado el 14 de marzo de 2020]. Disponible en: https://www.redbull.com/es-es/energydrink/red-bull-energy-drink-ingredientes
- Coca Cola European Partners. Monster Energy (Original) – MultiPack de 4 [Internet]; 2019 [Citado el 14 de marzo de 2020]. Disponible en: https://www.ccepiberia.com/es/webclientes/Upload/documents/MONSTER%20ENERGY%20(Green)%20Pack%20de%204.pdf
- Kozik TM, Shah S, Bhattacharyya M, Franklin TT, Connolly TF, Chien W, et al. Cardiovascular responses to energy drinks in a healthy population: The C-energy study. Am J Emerg Med. 2016; 34(7):1205-9. https://pubmed.ncbi.nlm.nih.gov/27162113/
- González-Solanellas M, Puig M, Rodriguez P, Zabaleta-del-Olmo E. Estudio prospectivo de la incidencia de eventos cardiovasculares en adultos jóvenes y su relación con el síndrome metabólico. Aten Primaria. 2018; 50(1): 67–69. https://www.sciencedirect.com/science/article/pii/S0212656717300598
- Brotons C, Moral I, Fernández D, Puig M, Calvo E, Martínez P, et al. Estimación del riesgo cardiovascular de por vida (IBERLIFERISK): una herramienta nueva en prevención primaria de las enfermedades cardiovasculares. Rev Esp Cardiol. 2019; 72(7):562-568. https://www.sciencedirect.com/science/article/abs/pii/S030089321830232X
- Cuende J. Utilidad del cálculo del riesgo cardiovascular a 30 años y de la edad vascular. Med Clin. 2015; 144(1):526-527. https://www.sciencedirect.com/science/article/pii/S0025775314006368
References
Arora S, Stouffer GA, Kucharska-Newton A, Qamar A, Vaduganathan M, Pandey A, et al. Twenty Year Trends and Sex Differences in Young Adults Hospitalized with Acute Myocardial Infarction: The ARIC Community Surveillance Study. Circulation. 2019; 139(8):1047-1056. https://pubmed.ncbi.nlm.nih.gov/30586725/
Gupta A, Wang Y, Spertus JA, Geda M, Lorenze N, Nkonde-Price C, et al. Trends in acute myocardial infarction in young patients and differences by sex and race, 2001 to 2010. J Am Coll Cardiol. 2014; 64(4): 337-345. https://pubmed.ncbi.nlm.nih.gov/25060366/
Naghavi M, Abajobir A, Abbafati C, Abbas K, Abd-Allah F, Abera S, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980- 2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017; 390:1151-1210. https://pubmed.ncbi.nlm.nih.gov/28919116/
Shah N, Kelly AM, Cox N, Wong C, Soon K. Myocardial Infarction in the "Young": Risk Factors, Presentation, Management and Prognosis. Heart Lung Circ. 2016; 25(10):955-960. https://pubmed.ncbi.nlm.nih.gov/27265644/
Yang J, Biery D, Singh A, Divakaran S, DeFilippis E, Wu W, et al. Risk Factors and Outcomes of Very Young Adults Who Experience Myocardial Infarction: The Partners YOUNG-MI Registry. Am J Med. 2019; S0002-9343(19)30962-3. https://pubmed.ncbi.nlm.nih.gov/31715169/
García-Redondo AB, Aguado A, Briones AM, Salaices M. NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res. 2016; 114:110-20. https://pubmed.ncbi.nlm.nih.gov/27773825/
Rodrigues-Díez R, Salaices M. Factores de riesgo cardiovascular y estrés oxidativo en jóvenes. Clin Investig Arterioscler. 2017; 29(5):216-217. https://www.sciencedirect.com/science/article/abs/pii/S021491681730102X
Allen NB, Siddique J, Wilkins JT, Shay C, Lewis CE, Goff DC, et al. Blood pressure trajectories in early adulthood and subclinical atherosclerosis in middle age. JAMA 2014; 311(5):490–7. https://pubmed.ncbi.nlm.nih.gov/24496536/
Pletcher MJ, Bibbins-Domingo K, Lewis CE, Wei GS, Sidney S, Carr JJ, et al. Prehypertension during young adulthood and coronary calcium later in life. Ann Intern Med. 2008; 149(2):91–9. https://pubmed.ncbi.nlm.nih.gov/18626048/
Pletcher MJ, Bibbins-Domingo K, Liu K, Sidney S, Lin F, Vittinghoff E, et al. Nonoptimal lipids commonly present in young adults and coronary calcium later in life: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Ann Intern Med. 2010; 153(3):137–46. https://pubmed.ncbi.nlm.nih.gov/20679558/
Gray L, Lee IM, Sesso HD, Batty GD. Blood pressure in early adulthood, hypertension in middle age, and future cardiovascular disease mortality: HAHS (Harvard Alumni Health Study). J Am Coll Cardiol. 2011; 58(23):2396–403. https://pubmed.ncbi.nlm.nih.gov/22115646/
Navar-Boggan AM, Peterson ED, D’Agostino RB, Neely B, Sniderman AD, Pencina MJ. Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation 2015; 131(5):451–8. https://pubmed.ncbi.nlm.nih.gov/25623155/
Pletcher MJ, Vittinghoff E, Thanataveerat A, Bibbins-Domingo K, Moran AE. Young adult exposure to cardiovascular risk factors and risk of events later in life: the Framingham Offspring study. PLoS One. 2016; 11(5):e0154288. https://pubmed.ncbi.nlm.nih.gov/27138014/
Stamler J, Daviglus ML, Garside DB, Dyer AR, Greenland P, Neaton JD. Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. JAMA. 2000; 284(3):311–8. https://pubmed.ncbi.nlm.nih.gov/10891962/
Seshadri S, Wolf PA, Beiser A, Vasan RS, Wilson PW, Kase CS et al. Elevated midlife blood pressure increases stroke risk in elderly persons: the Framingham Study. Arch Intern Med. 2001; 161(19):2343–50. https://pubmed.ncbi.nlm.nih.gov/11606150/
O'Toole J, Gibson I, Flaherty G. Young Adults’ Perception of Cardiovascular Disease Risk. The Journal for Nurse Practitioners. 2019; 15(10): e197-e200. https://www.sciencedirect.com/science/article/abs/pii/S1555415519301758
Franz CA, Frishman WH. Marijuana Use and Cardiovascular Disease. Cardiol Rev. 2016; 24(4): 158–162. https://pubmed.ncbi.nlm.nih.gov/26886465/
Huang RC, Song XT, Zhang DF, Xu JY, Boehmer KR, Leppin AA, et al. Preferences and attitudes of young Chinese clinicians about using a shared decision making tools for communicating cardiovascular risk. Chronic Dis Transl Med. 2019; 5(2):105-112. https://pubmed.ncbi.nlm.nih.gov/31367699/
Richards JR, Garber D, Laurin EG, Albertson TE, Derlet RW, Amsterdam EA, et al. Treatment of cocaine cardiovascular toxicity: a systematic review. Clin Toxicol (Phila). 2016; 54(5):345-364. https://pubmed.ncbi.nlm.nih.gov/26919414/
Ehlers A, Marakis G, Lampen A, Hirsch-Ernst KI. Risk assessment of energy drinks with focus on cardiovascular parameters and energy drink consumption in Europe. Food Chem Toxicol. 2019; 130:109–121. https://pubmed.ncbi.nlm.nih.gov/31112702/
Havakuk O, Rezkalla SH, Kloner RA. The Cardiovascular Effects of Cocaine. J Am Coll Cardiol. 2017; 70(1):101-113. https://www.sciencedirect.com/science/article/pii/S0735109717373321
Kivimäki M, Steptoe A. Effects of stress on the development and progression of cardiovascular disease. Nat Rev Cardiol. 2018; 15(4):215-229. https://pubmed.ncbi.nlm.nih.gov/29213140/
Pacher P, Steffens S, Haskó G, Schindler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol. 2018; 15(3):151-166. https://pubmed.ncbi.nlm.nih.gov/28905873/
Talarico GP, Crosta ML, Giannico MB, Summaria F, Calò L, Patrizi R. Cocaine and coronary artery diseases: a systematic review of the literature. J Cardiovasc Med. 2017; 18(5):291–294. https://pubmed.ncbi.nlm.nih.gov/28306693/
Navas-Nacher EL, Colangelo L, Beam C, Greenland P. Risk factors for coronary heart disease in men 18 to 39 years of age. Ann Intern Med. 2001; 134(6):433-9. https://pubmed.ncbi.nlm.nih.gov/11255518/
Daviglus ML, Stamler J, Pirzada A, Yan LL, Garside DB, Liu K, et al. Favorable cardiovascular risk profile in young women and long-term risk of cardiovascular and all-cause mortality. JAMA. 2004; 292(13):1588-92. https://pubmed.ncbi.nlm.nih.gov/15467061/
Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004; 364(9438):937-952. https://pubmed.ncbi.nlm.nih.gov/15364185/
Gulati R, Behfar A, Narula J, Kanwar A, Lerman A, Cooper L, et al. Acute Myocardial Infarction in Young Individuals. Mayo Clin Proc. 2020; 95(1):136-156. https://www.sciencedirect.com/science/article/pii/S0025619619304215
Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003; 108(14):1664-1672. https://pubmed.ncbi.nlm.nih.gov/14530185/
Towfighi A, Markovic D, Ovbiagele B. National gender-specific trends in myocardial infarction hospitalization rates among patients aged 35 to 64 years. Am J Cardiol. 2011; 108(8):1102-1107. https://pubmed.ncbi.nlm.nih.gov/21816380/
Izadnegahdar M, Singer J, Lee MK, Gao M, Thompson CR, Kopec J, et al. Do younger women fare worse? sex differences in acute myocardial infarction hospitalization and early mortality rates over ten years. J Womens Health (Larchmt). 2014; 23(1):10-17. https://pubmed.ncbi.nlm.nih.gov/24206026/
Cole JH, Miller 3rd JI, Sperling LS, Weintraub WS. Long-term follow-up of coronary artery disease presenting in young adults. J Am Coll Cardiol. 2003; 41(4):521e8. https://pubmed.ncbi.nlm.nih.gov/12598059/
Aggarwal A, Srivastava S, Velmurugan M. Newer perspectives of coronary artery disease in young. World J Cardiol. 2016; 8(12):728–734. https://pubmed.ncbi.nlm.nih.gov/28070240/
Klein LW, Nathan S. Coronary artery disease in young adults. J Am Coll Cardiol. 2003; 41(4):529-31. https://www.onlinejacc.org/content/41/4/529
Jaeger BR, Richter Y, Nagel D, Heigl F, Vogt A, Roeseler E, et al. Longitudinal cohort study on the effectiveness of lipid apheresis treatment to reduce high lipoprotein(a) levels and prevent major adverse coronary events. Nat Clin Pract Cardiovasc Med. 2009; 6(3):229e39. https://pubmed.ncbi.nlm.nih.gov/19234501/
Leebmann J, Roeseler E, Julius U, Heigl F, Spitthoever R, Heutling D, et al. Lipoprotein apheresis in patients with maximally tolerated lipid-lowering therapy, lipoprotein(a)-hyperlipoproteinemia, and progressive cardiovascular disease: prospective observational multicenter study. Circulation. 2013; 128(24):2567e76. https://pubmed.ncbi.nlm.nih.gov/24056686/
von Dryander M, Fischer S, Passauer J, Muller G, Bornstein SR, Julius U. Differences in the atherogenic risk of patients treated by lipoprotein apheresis according to their lipid pattern. Atherosclerosis Suppl. 2013; 14(1):39e44. https://pubmed.ncbi.nlm.nih.gov/23357139/
Erqou S, Kaptoge S, Perry PL, Di Angelantonio E, Thompson A, White IR, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009; 302(4):412e23. https://pubmed.ncbi.nlm.nih.gov/19622820/
Nordestgaard BG, Chapman MJ, Ray K, Boren J, Andreotti F, Watts GF, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010; 31(23):2844e53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295201/
Lamon-Fava S, Marcovina SM, Albers JJ, Kennedy H, Deluca C, White CC, et al. Lipoprotein(a) levels, apo(a) isoform size, and coronary heart disease risk in the Framingham Offspring Study. J Lipid Res. 2011; 52(6):1181e7. https://pubmed.ncbi.nlm.nih.gov/21478162/
Tselmin S, Muller G, Gelgaft E, Fischer S, Julius U. An elevated lipoprotein(a) plasma level as a cardiovascular risk factor. Atherosclerosis Suppl. 2015; 18: 257e62. https://pubmed.ncbi.nlm.nih.gov/25936334/
Nordestgaard BG, Langsted A. Lipoprotein (a) as a cause of cardiovascular disease: insights from epidemiology, genetics, and biology. J Lipid Res. 2016; 57:1953–75. https://pubmed.ncbi.nlm.nih.gov/27677946/
Havel JH, Kane JP. Introduction: structure and metabolism of plasma lipoproteins. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The Metabolic & Molecular Bases of Inherited Disease. 8th edition. New York: Mcgraw-Hill, 2001:2705–16.
Kronenberg F, Utermann G. Lipoprotein(a): resurrected by genetics. J Intern Med 2013; 273: 6–30. https://pubmed.ncbi.nlm.nih.gov/22998429/
Romagnuolo R, Marcovina SM, Boffa MB, Koschinsky ML. Inhibition of plasminogen activation by apo(a): role of carboxyl-terminal lysines and identification of inhibitory domains in apo(a). J lipid research. 2014; 55:625–34. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966697/
Langsted A, Kamstrup PR, Nordestgaard BG. High lipoprotein(a) and low risk of major bleeding in brain and airways in the general population: a Mendelian randomization study. Clin Chem. 2017; 63: 1714–23. https://pubmed.ncbi.nlm.nih.gov/28877919/
Langsted A, Nordestgaard BG, Kamstrup PR. Elevated Lipoprotein(a) and Risk of Ischemic Stroke. J Am Coll Cardiol. 2019; 74(1):54-66. https://pubmed.ncbi.nlm.nih.gov/31272552/
Schatz U, Fischer S, Müller G, Tselmin S, Birkenfeld AL, Julius U, et al. Cardiovascular risk factors in patients with premature cardiovascular events attending the University of Dresden Lipid Clinic. Atheroscler Suppl. 2019; 40:94-99. https://pubmed.ncbi.nlm.nih.gov/31818455/
Williams B, Mancia G, Spiering W, Agabiti E, Azizi M, Burnier M, et al. Guía ESC/ESH 2018 sobre el diagnóstico y tratamiento de la hipertensión arterial. Rev Esp Cardiol. 2019; 72(2):160.e1-e78. https://www.revespcardiol.org/es-guia-esc-esh-2018-sobre-el-articulo-S0300893218306791
Mach F, Baigent C, Catapano A, Koskinas K, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for themanagement of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020; 41(1):111-188. https://pubmed.ncbi.nlm.nih.gov/31504418/
Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020; 41(3):407-477. https://pubmed.ncbi.nlm.nih.gov/31504439/
Escobar C, Anguita M, Arrarte V, Barrios V, Cequier A, Cosín-Sales J, et al. Recomendaciones para mejorar el control lipídico. Documento de consenso de la Sociedad Española de Cardiología. Rev Esp Cardiol. 2020; 73(2):161–167. https://www.sciencedirect.com/science/article/abs/pii/S0300893219303690
American Diabetes Association. Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020; 43(S1):1-207. https://care.diabetesjournals.org/content/43/Supplement_1
Kivimäki M, Kawachi I. Work Stress as a Risk Factor for Cardiovascular Disease. Curr Cardiol Rep. 2015; 17(9):74. https://pubmed.ncbi.nlm.nih.gov/26238744/
Dragano N, Siegrist S, Nyberg S, Lunau T, Fransson E, Alfredsson L, et al. Effort–Reward Imbalance at Work and Incident Coronary Heart Disease: A Multicohort Study of 90,164 Individuals. Epidemiology. 2017; 28(4):619–626. https://pubmed.ncbi.nlm.nih.gov/28570388/
Kivimäki M, Jokela M, Nyberg ST, Singh-Manoux A, Fransson EI, Alfredsson L, et al. Long working hours and risk of coronary heart disease and stroke: a systematic review and meta-analysis of published and unpublished data for 603,838 individuals. Lancet. 2015; 386(10005):1739-46. https://pubmed.ncbi.nlm.nih.gov/26298822/
Huang Y, Xu S, Hua J, Zhu D, Liu C, Hu Y, et al. Association between job strain and risk of incident stroke: A meta-analysis. Neurology. 2015; 85(19):1648-54. https://pubmed.ncbi.nlm.nih.gov/26468409/
Nyberg ST, Fransson EI, Heikkilä K, Ahola K, Alfredsson L, Bjorner JB, et al. Job strain as a risk factor for type 2 diabetes: a pooled analysis of 124,808 men and women. Diabetes Care. 2014; 37(8):2268-75. https://pubmed.ncbi.nlm.nih.gov/25061139/
Ferrie JE, Virtanen M, Jokela M, Madsen IEH, Heikkilä K, Alfredsson L, et al. Job insecurity and risk of diabetes: a meta-analysis of individual participant data. CMAJ. 2016; 188(17-18):E447-E455. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135521/
Hackett RA, Steptoe A. Type 2 diabetes mellitus and psychological stress - a modifiable risk factor. Nat Rev Endocrinol. 2017; 13(9):547-560. https://pubmed.ncbi.nlm.nih.gov/28664919/
Madsen IEH, Nyberg ST, Magnusson Hanson LL, Ferrie JE, Ahola K, Alfredsson L, et al. Job strain as a risk factor for clinical depression: systematic review and meta-analysis with additional individual participant data. Psychol Med. 2017; 47(8):1342-1356. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471831/
Heikkilä K, Nyberg ST, Theorell T, Fransson EI, Alfredsson L, Bjorner JB, et al. Work stress and risk of cancer: meta-analysis of 5700 incident cancer events in 116,000 European men and women. BMJ. 2013; 346:f165. https://pubmed.ncbi.nlm.nih.gov/23393080/
Heikkila K, Nyberg ST, Madsen IE, de Vroome E, Alfredsson L, Bjorner JJ, et al. Long working hours and cancer risk: a multi-cohort study. Br J Cancer. 2016; 114(7):813-8. https://pubmed.ncbi.nlm.nih.gov/26889978/
Heikkilä K, Madsen IE, Nyberg ST, Fransson EI, Ahola K, Alfredsson L, et al. Job strain and the risk of inflammatory bowel diseases: individual-participant meta-analysis of 95,000 men and women. PLoS One. 2014; 9(2):e88711. https://pubmed.ncbi.nlm.nih.gov/24558416/
Steptoe A, Kivimäki M. Stress and cardiovascular disease. Nat Rev Cardiol. 2012; 9(6):360–370. https://pubmed.ncbi.nlm.nih.gov/22473079/
Orth-Gomér K, Wamala SP, Horsten M, Schenck-Gustafsson K, Schneiderman N, Mittleman MA.. Marital stress worsens prognosis in women with coronary heart disease: The Stockholm Female Coronary Risk Study. JAMA. 2000; 284(23):3008–3014. https://pubmed.ncbi.nlm.nih.gov/11122587/
Lee S, Colditz GA, Berkman LF, Kawachi I. Caregiving and risk of coronary heart disease in U. S. women: a prospective study. Am J Prev Med. 2003; 24(2):113–119. https://pubmed.ncbi.nlm.nih.gov/12568816/
Carey IM, Shah SM, DeWilde S, Harris T, Victor CR, Cook DG. Increased risk of acute cardiovascular events after partner bereavement: a matched cohort study. JAMA Intern Med. 2014; 174(4):598–605. https://pubmed.ncbi.nlm.nih.gov/24566983/
Kario K, McEwen BS, Pickering TG. Disasters and the heart: a review of the effects of earthquake-induced stress on cardiovascular disease. Hypertens Res. 2013; 26(5):355–367. https://pubmed.ncbi.nlm.nih.gov/12887126/
Qureshi EA, Merla V, Steinberg J, Rozanski A. Terrorism and the heart: implications for arrhythmogenesis and coronary artery disease. Card Electrophysiol Rev. 2003; 7(1):80–84. https://pubmed.ncbi.nlm.nih.gov/12766525/
Valtorta NK, Kanaan M, Gilbody S, Ronzi S, Hanratty B. Loneliness and social isolation as risk factors for coronary heart disease and stroke: systematic review and meta-analysis of longitudinal observational studies. Heart. 2016; 102(13):1009–1016. https://pubmed.ncbi.nlm.nih.gov/27091846/
Fransson EI, Nyberg ST, Heikkilä K, Alfredsson L, Bjorner JB, Borritz M, et al. Job strain and the risk of stroke: an individual-participant data meta-analysis. Stroke. 2015; 46(2):557–559. https://pubmed.ncbi.nlm.nih.gov/25563644/
Hughes K, Bellis MA, Hardcastle KA, Sethi D, Butchart A, Mikton C, et al. The effect of multiple adverse childhood experiences on health: a systematic review and meta-analysis. Lancet Public Health. 2017; 2(8):e356–366. https://pubmed.ncbi.nlm.nih.gov/29253477/
Li J, Zhang M, Loerbroks A, Angerer P, Siegrist J. Work stress and the risk of recurrent coronary heart disease events: a systematic review and meta-analysis. Int J Occup Med Environ Health. 2015; 28(1):8–19. https://pubmed.ncbi.nlm.nih.gov/26159942/
Arnold SV, Smolderen KG, Buchanan DM, Li Y, Spertus JA. Perceived stress in myocardial infarction: long-term mortality and health status outcomes. J Am Coll Cardiol. 2012; 60(18):1756–1763. https://pubmed.ncbi.nlm.nih.gov/23040574/
Wilbert-Lampen U, Leistner D, Greven S, Pohl T, Sper S, Völker C, et al. Cardiovascular events during World Cup soccer. N Engl J Med. 2008; 358(5):475–483. https://pubmed.ncbi.nlm.nih.gov/18234752/
Stewart R, Colquhoun D, Marschner S, Kirby A, Simes J, Nestel P, et al. Persistent psychological distress and mortality in patients with stable coronary artery disease. Heart. 2017; 103(23):1860-1866. https://pubmed.ncbi.nlm.nih.gov/28652315/
Wei J, Rooks C, Ramadan R, Shah AJ, Bremner JD, Quyyumi AA, et al. Meta-analysis of mental stress-induced myocardial ischemia and subsequent cardiac events in patients with coronary artery disease. Am J Cardiol. 2014; 114(2):187-92. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4126399/
Brotman DJ, Golden SH, Wittstein IS. The cardiovascular toll of stress. Lancet. 20017; 370(9592):1089–1100. https://pubmed.ncbi.nlm.nih.gov/17822755/
Steptoe A, Kivimäki M. Stress and cardiovascular disease: an update on current knowledge. Annu Rev Public Health. 2013; 34:337–354. https://pubmed.ncbi.nlm.nih.gov/23297662/
Fleshner M, Crane CR. Exosomes, DAMPs and miRNA: features of stress physiology and immune homeostasis. Trends Immunol. 2017; 38(10):768–776. https://pubmed.ncbi.nlm.nih.gov/28838855/
Winhusen T, Theobald J, Kaelber DC, Lewis D. The association between regular cannabis use, with and without tobacco co-use, and adverse cardiovascular outcomes: cannabis may have a greater impact in non-tobacco smokers. Am J Drug Alcohol Abuse. 2019; 19:1-8. https://pubmed.ncbi.nlm.nih.gov/31743053/
Greger J, Bates V, Mechtler L, Gengo F. A Review of Cannabis and Interactions With Anticoagulant and Antiplatelet Agents. J Clin Pharmacol. 2020; 60(4):432-438. https://pubmed.ncbi.nlm.nih.gov/31724188/
Palatini P, Fania C, Mos L, Mazzer A, Saladini F, Casiglia E. Alcohol Intake More than Doubles the Risk of Early Cardiovascular Events in Young Hypertensive Smokers. Am J Med. 2017; 130(8):967-974.e1. https://pubmed.ncbi.nlm.nih.gov/28366424/
Keyhani S, Steigerwald S, Ishida J, Vali M, Cerda M, Hasin D, et al. Risks and benefits of Marijuana use: A National survey of U.S. adults. Ann Intern Med. 2018; 169:282–90. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157909/
Hasin DS. US epidemiology of cannabis use and associated problems. Neuropsychopharmacology. 2018; 43:195–212. https://pubmed.ncbi.nlm.nih.gov/28853439/
Abrams DI. The therapeutic effects of Cannabis and cannabinoids: An update from the National Academies of Sciences, Engineering and Medicine report. Eur J Intern Med. 2018; 49:7-11. https://pubmed.ncbi.nlm.nih.gov/29325791/
Beaconsfield P, Ginsburg J, Rainsbury R. Marihuana smoking. Cardiovascular effects in man and possible mechanisms. N Engl J Med. 1972; 287(5):209-12. https://pubmed.ncbi.nlm.nih.gov/4402574/
Rezkalla S, Kloner RA. Cardiovascular effects of marijuana. Trends Cardiovasc Med. 2019; 29(7):403-407. https://pubmed.ncbi.nlm.nih.gov/30447899/
Mason EK, Gak AE, Finno JG, Cannon RD, Jacoby JL. Thoracic Aortic Dissection Associated with Marijuana Use. J Emerg Med. 2019; 57(2):235-237. https://pubmed.ncbi.nlm.nih.gov/31126675/
Pacher P, Mukhopadhyay P, Mohanraj R, Godlewski G, Bátkai S, Kunos G. Modulation of the endocannabinoid system in cardiovascular disease: therapeutic potential and limitations. Hypertension. 2008; 52(4):601–607. https://pubmed.ncbi.nlm.nih.gov/18779440/
Montecucco F, Lenglet S, Braunersreuther V, Burger F, Pelli G, Bertolotto M, et al. CB2 cannabinoid receptor activation is cardioprotective in a mouse model of ischemia/reperfusion. J Mol Cell Cardiol. 2009; 46(5):612–620. https://pubmed.ncbi.nlm.nih.gov/19162037/
Mukhopadhyay P, Bátkai S, Rajesh M, Czifra N, Harvey-White J, Haskó G, et al. Pharmacological inhibition of CB1 cannabinoid receptor protects against doxorubicin-induced cardiotoxicity. J Am Coll Cardiol. 2007; 50(6):528–536. https://pubmed.ncbi.nlm.nih.gov/17678736/
Slavic S, Lauer D, Sommerfeld M, Kemnitz UR, Grzesiak A, Trappiel M, et al. Cannabinoid receptor 1 inhibition improves cardiac function and remodelling after myocardial infarction and in experimental metabolic syndrome. J Mol Med (Berl). 2013; 91(7):811–823. https://pubmed.ncbi.nlm.nih.gov/23636507/
Schaich CL, Shaltout HA, Brosnihan KB, Howlett AC, Diz DI. Acute and chronic systemic CB1 cannabinoid receptor blockade improves blood pressure regulation and metabolic profile in hypertensive (mRen2)27 rats. Physiol Rep. 2014; 2(8):e12108. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246581/
Cornish JW, O'Brien CP. Crack cocaine abuse: An epidemic with many public health consequences. Annu Rev Public Health. 1996; 17:259–273. https://pubmed.ncbi.nlm.nih.gov/8724227/
Kim ST, Park T. Acute and Chronic Effects of Cocaine on Cardiovascular Health. Int J Mol Sci. 2019; 20(3):pii: E584. https://pubmed.ncbi.nlm.nih.gov/30700023/
European Drug Report 2014: Trends and developments. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). 2015. Disponible en: http://www.emcdda.europa.eu/publications/edr/trends-developments/2014_en
Carrillo X, Vilalta V, Cediel G, Fernandez-Nofrerias E, Rodriguez-Leor O, Mauri J, et al. Trends in prevalence and outcomes of acute coronary syndrome associated with cocaine consumption: The RUTI-cocaine study. Int J Cardiol. 2019; 15:283:23-27. https://pubmed.ncbi.nlm.nih.gov/30595359/
Lange RA, Cigarroa RG, Yancy CW Jr, Willard JE, Popma JJ, Sills MN, et al. Cocaine-induced coronary artery vasoconstriction. N Engl J Med. 1989; 321(23):1557–1562. https://pubmed.ncbi.nlm.nih.gov/2573838/
Benzaquen BS, Cohen V, Eisenberg MJ. Effects of cocaine on the coronary arteries. Am Heart J. 2001; 142(3):402–410. https://pubmed.ncbi.nlm.nih.gov/11526352/
Davies O, Ajayeoba O, Kurian D. Coronary artery spasm: an often overlooked diagnosis. Niger Med J. 2014; 55(44):356–358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124553/
Lucena J, Blanco M, Jurado C, Rico A, Salguero M, Vazquez R, et al. Cocaine-related sudden death: a prospective investigation in south-west Spain. Euro Heart J. 2010; 31(3):318–329. https://pubmed.ncbi.nlm.nih.gov/20071326/
O'Keefe JH, Bhatti SK, Bajwa A, DiNicolantonio JJ, Lavie CJ. Alcohol and cardiovascular health: the dose makes the poison…or the remedy. Mayo Clin Proc. 2014; 89(3):382-93. https://pubmed.ncbi.nlm.nih.gov/24582196/
World Health Organization Management of Substance Abuse Team. Global Status Report on Alcohol and Health. 2011 [Internet]. World Health Organization; 2018 [Citado el 14 de marzo de 2020]. Disponible en: https://www.who.int/substance_abuse/publications/alcohol_2011/en/
Mostofsky E, Chahal HS, Mukamal KJ, Rimm EB, Mittleman MA. Alcohol and Immediate Risk of Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis. Circulation. 2016; 133(10):979-87. https://pubmed.ncbi.nlm.nih.gov/26936862/
Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y, Patra J. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet. 2009; 373(9682):2223-2233. https://pubmed.ncbi.nlm.nih.gov/19560604/
Damen JA, Hooft L, Schuit E, Debray TP, Collins GS, Tzoulaki I, et al. Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ. 2016; 16;353:i2416. https://pubmed.ncbi.nlm.nih.gov/27184143/
Zucconi S, Volpato C, Adinolfi F, Gandini E, Gentile E, Loi A, et al. Gathering consumption data on specific consumer groups of energy drinks. EFSA Supporting Publications. 2013; 10(3):1-190. https://www.efsa.europa.eu/en/supporting/pub/en-394
McLellan TM, Lieberman HR. Do energy drinks contain active components other than caffeine?. Nutr Rev. 2012; 70(12):730-44. https://pubmed.ncbi.nlm.nih.gov/23206286/
Gunja N, Brown JA. Energy drinks: health risks and toxicity. Med J Aust. 2012; 196(1):46–149. https://pubmed.ncbi.nlm.nih.gov/22256934/
Wikoff D, Welsh BT, Henderson R, Brorby GP, Britt J, Myers E, et al. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem Toxicol. 2017; 109(Pt 1):585-648. https://www.sciencedirect.com/science/article/pii/S0278691517301709
Nawrot P, Jordan S, Eastwood J, Rotstein J, Hugenholtz A, Feeley M. Effects of caffeine on human health. Food Addit Contam. 2003; 20(1):1-30. https://pubmed.ncbi.nlm.nih.gov/12519715/
European Food Safety Authority. Scientific Opinion on the substantiation of health claims related to caffeine and increase in physical performance during short-term high-intensity exercise (ID 737, 1486, 1489), increase in endurance performance (ID 737, 1486), increase in endurance capacity (ID 1488) and reduction in the rated perceived exertion/effort during exercise (ID 1488, 1490) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal. 2011; 9(4):2053. https://www.efsa.europa.eu/en/efsajournal/pub/2053
Ferré S. An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem. 2008; 105(4):1067-79. https://pubmed.ncbi.nlm.nih.gov/18088379/
Ferré S. Role of the central ascending neurotransmitter systems in the psychostimulant effects of caffeine. J Alzheimers Dis. 2010; 20 Suppl 1:S35-49. https://pubmed.ncbi.nlm.nih.gov/20182056/
Doerner JM, Kuetting DL, Luetkens JA, Naehle CP, Dabir D, Homsi R, et al. Caffeine and taurine containing energy drink increases left ventricular contractility in healthy volunteers. Int J Cardiovasc Imaging. 2015; 31(3):595-601. https://pubmed.ncbi.nlm.nih.gov/25425431/
Bakker AJ, Berg HM. Effect of taurine on sarcoplasmic reticulum function and force in skinned fast-twitch skeletal muscle fibres of the rat. J Physiol. 2002; 538(Pt 1):185-94. https://pubmed.ncbi.nlm.nih.gov/11773327/
European Food Safety Authority. Scientific Opinion on the safety and efficacy of inositol as a feed additive for fish, dogs and cats. EFSA Journal. 2014; 12(5):3671. https://www.efsa.europa.eu/en/efsajournal/pub/3671
Red Bull. Ingredientes de Red Bull Energy Drink [Internet]. Austria: Red Bull; 2019 [Citado el 14 de marzo de 2020]. Disponible en: https://www.redbull.com/es-es/energydrink/red-bull-energy-drink-ingredientes
Coca Cola European Partners. Monster Energy (Original) – MultiPack de 4 [Internet]; 2019 [Citado el 14 de marzo de 2020]. Disponible en: https://www.ccepiberia.com/es/webclientes/Upload/documents/MONSTER%20ENERGY%20(Green)%20Pack%20de%204.pdf
Kozik TM, Shah S, Bhattacharyya M, Franklin TT, Connolly TF, Chien W, et al. Cardiovascular responses to energy drinks in a healthy population: The C-energy study. Am J Emerg Med. 2016; 34(7):1205-9. https://pubmed.ncbi.nlm.nih.gov/27162113/
González-Solanellas M, Puig M, Rodriguez P, Zabaleta-del-Olmo E. Estudio prospectivo de la incidencia de eventos cardiovasculares en adultos jóvenes y su relación con el síndrome metabólico. Aten Primaria. 2018; 50(1): 67–69. https://www.sciencedirect.com/science/article/pii/S0212656717300598
Brotons C, Moral I, Fernández D, Puig M, Calvo E, Martínez P, et al. Estimación del riesgo cardiovascular de por vida (IBERLIFERISK): una herramienta nueva en prevención primaria de las enfermedades cardiovasculares. Rev Esp Cardiol. 2019; 72(7):562-568. https://www.sciencedirect.com/science/article/abs/pii/S030089321830232X
Cuende J. Utilidad del cálculo del riesgo cardiovascular a 30 años y de la edad vascular. Med Clin. 2015; 144(1):526-527. https://www.sciencedirect.com/science/article/pii/S0025775314006368