Issue
Copyright (c) 2021 Javier Porras Alvarez, Mariana Catalina Puerta Guarin, Fernando Javier Ávila Correa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Heart rate variability of male versus female track cyclists during an incremental test
Corresponding Author(s) : Javier Porras Alvarez
Ciencia e Innovación en Salud,
2021
Abstract
Introduction: This study shows the differences in heart rate variability (HRV) between men and women professional cyclists, during a maximal incremental test. Objective: To evaluate HRV in professional male and female track cyclists during a maximum incremental test of 12 min. Methods: 18 professional cyclists competing in track events participated, 7 women age: 22 ± 5.9 years; years of training 5.8 ± 2.9 and 11 men age: 21.4 ± 4.4 years; years of training 6.7 ± 3.3. The incremental test for men started with 100 watts and 50 watt increments up to 300 watts, then 20 watt increments, every 2 minutes, pedaling cadence 75-90 rpm. Women started with 50 watts, 50 watt increments up to 200 watts, then 20 watt increments, every 2 minutes, pedaling cadence 65-80 rpm. Results: First stage, there was no significant difference in HRV between the groups. Second stage, RMSSD was significantly higher in women. Third stage, LF/HF was significantly higher in men. Fourth to sixth stage, there was no significant difference in HRV. During the first minute of recovery, there was no significant difference in HRV. Conclusions: During an incremental test in speed-trained cyclists, significant differences were observed in HRV but at different exercise intensities between men and women. On the other hand, at the same intensity of exercise there are no significant differences in HRV, as in the first minute of recovery. This indicates that the evaluation of HRV where men and women are included, the incremental test protocol must be exactly the same.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Bouet M. Signification du sport. 1968 [cited 2020 Jun 24] http://archives.umc.edu.dz/handle/123456789/113451
- Matveev LP. Periodización del entrenamiento deportivo [Internet]. Madrid: IN. 1975 [cited 2020 Jul 14]. https://books.google.com.co/books?id=arTbAAAACAAJ&dq=Periodización+del+entrenamiento+deportivo.&hl=es&sa=X&ved=2ahUKEwjuwcGhpM3qAhUjhOAKHfqWABoQ6AEwAHoECAAQAQ
- Parlebas P. Contribution a un léxique commenté en science de laaction motrice. 198.
- Mirella R. Las nuevas metodologías del entrenamiento de la fuerza, la resistencia, la velocidad y la flexibilidad [Internet]. Primera. Editorial Paidotribo; 2006 [cited 2020 Jul 14].https://www.google.com/search?biw=1366&bih=608&tbm=bks&ei=bu0NX-7SMqOIggf6rYLQAQ&q=Las+nuevas+metodologías+del+entrenamiento+de+la+fuerza%2C+la+resistencia%2C+la+velocidad+y+la+flexibilidad&oq=Las+nuevas+metodologías+del+entrenamiento+de+la+fuerza%2C+la+r
- Kovacs R, medicine AB-T in cardiovascular, 2016 undefined. Cardiovascular adaptation in athletes. Elsevier [Internet]. [cited 2020 Jul 14]; https://www.sciencedirect.com/science/article/pii/S1050173815001188?casa_token=6iVaa7s-SCsAAAAA:fg_yro3j30iivEOoHG2QG9K-sc_xLZM6iLeIMXQL7vHhQBYKouobp_CbGMhM18qlJcgSv2NqBw
- Borg G. Perceived exertion. Exerc Sport Sci [Internet]. 1974 [cited 2020 Jun 24]; https://journals.lww.com/acsm-essr/Citation/1974/00020/Perceived_Exertion.6.aspx
- Cucullo JM, Terreros JL, Layus F, Quilez J. Prueba ergométrica indirecta. ¡Metodología para el cálculo óptimo de VO2 máx. en ciclistas RESUMEN RESUME [Internet]. apunts.org. [cited 2020 Jun 24]. https://www.apunts.org/index.php?p=revista&tipo=pdf-simple&pii=X0213371787049770
- Duncan G, Howley E, in BJ-M and science, 1997 undefined. Applicability of VO2max criteria: discontinuous versus continuous protocols. europepmc.org [Internet]. [cited 2020 Jul 14] https://europepmc.org/article/med/9044234
- Lucía A, Rabadán M, Hoyos J, Hernández-Capilla M, Pérez M, San Juan AF, et al. Frequency of the V̇O2max plateau phenomenon in world-class cyclists. Int J Sports Med [Internet]. 2006 Dec 30 [cited 2020 Jul 14];27(12):984–92. http://www.thieme-connect.de/DOI/DOI?10.1055/s-2006-923833
- Lee J-M, Bassett DR, Thompson DL, Fitzhugh EC. Validation of the Cosmed Fitmate for Prediction of Maximal Oxygen Consumption. J Strength Cond Res [Internet]. 2011 Sep [cited 2020 Jul 14];25(9):2573–9. http://journals.lww.com/00124278-201109000-00029
- Casajús JA, Piedrafita E, Aragonés M T. CRITERIOS DE MAXIMALIDAD EN PRUEBAS DE ESFUERZO CRITERIA FOR MAXIMAL EXERCISE TEST. redalyc.org [Internet]. 2009 [cited 2020 Jun 24];9(35):217–31. https://www.redalyc.org/pdf/542/54223022001.pdf
- Hill A, Medicine HL-QAIJ of, 1923 undefined. Muscular exercise, lactic acid, and the supply and utilization of oxygen. academic.oup.com [Internet]. [cited 2020 Jul 14]; https://academic.oup.com/qjmed/article-abstract/os-16/62/135/1594478
- Faria EW, Parker DL, Faria IE. The science of cycling: Physiology and training - Part 1. Vol. 35, Sports Medicine. 2005. p. 285–312.
- Faria E, Parker D. The science of cycling: factors affecting performance--Part 2. go.gale.com [Internet]. [cited 2020 Jul 14]; https://go.gale.com/ps/i.do?id=GALE%7CA200844007&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=01121642&p=AONE&sw=w
- Atkinson G, Davison R, … AJ-J of sports, 2003 undefined. Science and cycling: current knowledge and future directions for research. Taylor Fr [Internet]. [cited 2020 Jun 24] https://www.tandfonline.com/doi/abs/10.1080/0264041031000102097
- Bezerra De Almeida M, Ricardo DR, Araujo CG. Variabilidade da frequência cardíaca em um teste verdadeiramente máximo [Internet]. researchgate.net. [cited 2020 Jul 14]. https://www.researchgate.net/publication/200138055
- Bentley RF, Vecchiarelli E, Banks L, Gonçalves PEO, Thomas SG, Goodman JM. Heart rate variability and recovery following maximal exercise in endurance athletes and physically-active individuals. Appl Physiol Nutr Metab [Internet]. 2020 Apr 15 [cited 2020 Jul 14];apnm-2020-0154. http://www.nrcresearchpress.com/doi/10.1139/apnm-2020-0154
- Cottin F, Leprêtre PM, Lopes P, Papelier Y, Médigue C, Billat V. Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling. Int J Sports Med. 2006 Dec;27(12):959–67.
- Anosov O, Patzak A, Kononovich Y, Persson PB. High-frequency oscillations of the heart rate during ramp load reflect the human anaerobic threshold. Eur J Appl Physiol. 2000;83(4–5):388–94.
- Lucia A, Hoyos J, science JC-M and, 2001 undefined. Preferred pedalling cadence in professional cycling. pdfs.semanticscholar.org [Internet]. [cited 2020 Jul 14]. https://pdfs.semanticscholar.org/9202/27402213d7684f1a18d47bc80d0543bacb77.pdf
- Karapetian GK, Engels HJ, Gretebeck RJ. Use of heart rate variability to estimate LT and VT. Int J Sports Med [Internet]. 2008 Aug 22 [cited 2020 Jul 14];29(8):652–7. http://www.thieme-connect.de/DOI/DOI?10.1055/s-2007-989423
- Cottin FO, Digue CM, Lepreˆtre P-M, Lepreˆtre L, Papelier Y, Koralsztein J-P, et al. Heart Rate Variability during Exercise Performed below and above Ventilatory Threshold. researchgate.net [Internet]. 2004 [cited 2020 Jun 24]. http://www.acsm-msse.org
- Bishop D, Jenkins D. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. europepmc.org [Internet]. 1998 [cited 2020 Jun 24]; https://europepmc.org/article/med/9710868
- Mcdonald KG, Grote S, Shoepe TC. Accepted for printing in. J Hum Kinet [Internet]. 2014 [cited 2020 Jul 14];41:43–9. http://www.johk.pl/
- Moseley L, In AJ. The reliability of cycling efficiency. Med Sci [Internet]. 2001 [cited 2020 Jul 14]; https://pdfs.semanticscholar.org/eed4/f50eee1600210eb325bb71d0e867dd3ab504.pdf
- Heil D, Wilcox A, Quinn CM. Cardiorespiratory responses to seat-tube angle variation during steady-state cycling. Exerc - Sci Sport [Internet]. 1995 [cited 2020 Jul 14]; https://europepmc.org/article/med/7674878
- Bentley D, Wilson G, Davie A. Correlations between peak power output, muscular strength and cycle time trial performance in triathletes. he J Sport [Internet]. 1998 [cited 2020 Jul 14] https://europepmc.org/article/med/9830826
- Fernández-García B, Pérez J. Intensity of exercise during road race pro-cycling competition. Landaluce - Sci [Internet]. 2000 [cited 2020 Jul 14]; https://europepmc.org/article/med/10795793
- Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: Optimising training programmes and maximising performance in highly trained endurance athletes. Vol. 32, Sports Medicine. Adis International Ltd; 2002. p. 53–73.
- MARSH A, MARTIN P. Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences. Med Sci Sport Exerc [Internet]. 1997 [cited 2020 Jul 14]. https://insights.ovid.com/mespex/199709000/00005768-199709000-00016
- MacRae H, Hise K, Allen P. Effects of front and dual suspension mountain bike systems on uphill cycling performance. Med Sci Sports [Internet]. 2000 [cited 2020 Jul 14]; https://europepmc.org/article/med/10912893
- Dos-Santos R da CMCCR di MFB da SAL. Effects of Pre-Exercise Activities on Progressive Cycling Test Performance and Autonomic Response. 2014 Oct [cited 2020 Jul 14];17(5):84–94. https://www.asep.org/asep/asep/JEPonlineOCTOBER2014_Silveira.pdf
- Lepers R, Maffiuletti N. Evidence of neuromuscular fatigue after prolonged exercise Mode of muscle contraction and corticospinal excitability View project Blood flow stimulation and Performance recovery View project. 2000 [cited 2020 Jul 14];1880–6. https://www.researchgate.net/publication/12247282
- Blain G, Meste O, Bouchard T, Blain G, De Toulon-Var U. Assessment of ventilatory thresholds during graded and maximal exercise test using time varying analysis of respiratory sinus arrhythmia. Br J Sport Med [Internet]. 2005 [cited 2020 Jul 14];39:448–52. www.bjsportmed.com
- HARNISH CR, SWENSEN TC, PATE RR. Methods for estimating the maximal lactatesteady state in trained cyclists. Med Sci Sport Exerc [Internet]. 2001 Oct [cited 2020 Jul 14];1052–5. https://www.researchgate.net/profile/Chris_Harnish/publication/11934457_Methods_for_estimating_the_maximal_lactate_steady_state_in_trained_cyclists/links/5a0e070daca27244d285870e/Methods-for-estimating-the-maximal-lactate-steady-state-in-trained-cyclists.pdf
- Gourine A V., Ackland GL. Cardiac vagus and exercise [Internet]. Vol. 34, Physiology. American Physiological Society; 2019 [cited 2020 Jul 15]. p. 71–80. www.physiologyonline.org
- Michael S, Graham KS, Oam GMD. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals-a review [Internet]. Vol. 8, Frontiers in Physiology. Frontiers Media S.A.; 2017 [cited 2020 Jul 15]. p. 301. www.frontiersin.org
- GAMELIN FX, BERTHOIN S, BOSQUET L. Validity of the Polar S810 Heart Rate Monitor to Measure R-R Intervals at Rest. Med Sci Sport Exerc [Internet]. 2006 May [cited 2020 Jun 16];38(5):887–93. http://journals.lww.com/00005768-200605000-00013
- Grant CC, Mongwe L, Janse Van Rensburg DC, Fletcher L, Wood PS, Terblanche E, et al. The difference between exercise-induced autonomic and fitness changes measured after 12 and 20 weeks of medium-to-high intensity military training. J Strength Cond Res. 2016 Sep 1;30(9):2453–9.
- Kaikkonen P, Hynynen E, Mann T, … HR-E journal of, 2012 undefined. Heart rate variability is related to training load variables in interval running exercises. Springer [Internet]. [cited 2020 Jun 27]. https://link.springer.com/content/pdf/10.1007/s00421-011-2031-z.pdf
- Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: Intensity and duration effects. Med Sci Sports Exerc. 2007 Aug;39(8):1366–73.
- Casties JF, Mottet D, Le Gallais D. Non-linear analyses of heart rate variability during heavy exercise and recovery in cyclists. Int J Sports Med [Internet]. 2006 Oct 1 [cited 2020 Jul 14];27(10):780–5. http://www.thieme-connect.de/DOI/DOI?10.1055/s-2005-872968
- Sartor F, Vailati E, Valsecchi V, … FV-TJ of, 2013 undefined. Heart rate variability reflects training load and psychophysiological status in young elite gymnasts. journals.lww.com [Internet]. [cited 2020 Jun 26]; https://journals.lww.com/nsca-jscr/fulltext/2013/10000/Heart_Rate_Variability_Reflects_Training_Load_and.19.aspx
- Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Vol. 43, Sports Medicine. 2013. p. 773–81.
- Porras-Alvarez J, Olinda Bernal-Calderón M. Variabilidad de la frecuencia cardiaca: evaluación del entrenamiento deportivo. Revisión de tema Heart rate variability: sports training evaluation. Theme review. Duazary [Internet].
- Colombia RN-R de. 8430 de 1993 del Ministerio de Salud.
- Circulation TF-, 1996 undefined. of measurement, physiological interpretation and clinical use.
- Gourine A V., Ackland GL. Cardiac vagus and exercise. Vol. 34, Physiology. American Physiological Society; 2019. p. 71–80.
- White DW, Raven PB. Autonomic neural control of heart rate during dynamic exercise: Revisited. Vol. 592, Journal of Physiology. Blackwell Publishing Ltd; 2014. p. 2491–500.
- Michael S, Graham KS, Oam GMD. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals-a review. Vol. 8, Frontiers in Physiology. Frontiers Media S.A.; 2017.
- Hu S, Shi P, Yu H. The response of the autonomic nervous system to passive lower limb movement and gender differences . Springer [Internet]. 2015 Aug 1 [cited 2020 Jul 15];54(8):1159–67. https://www.researchgate.net/publication/281371940
- Karapetian GK, Engels HJ, Gretebeck KA, Gretebeck RJ. Effect of caffeine on LT, VT and HRVT. Int J Sports Med. 2012;33(7):507–13.
- Kaikkonen P, Rusko H, Martinmäki K. Post-exercise heart rate variability of endurance athletes after different high-intensity exercise interventions. Scand J Med Sci Sport. 2008 Aug;18(4):511–9.
- Hautala AJ, Mäkikallio TH, Seppänen T, Huikuri H V., Tulppo MP. Short-term correlation properties of R-R interval dynamics at different exercise intensity levels. Clin Physiol Funct Imaging. 2003;23(4):215–23.
- Teixeira L, Ritti-Dias RM, Tinucci T, Mion D, De Moraes Forjaz CL. Post-concurrent exercise hemodynamics and cardiac autonomic modulation. Eur J Appl Physiol [Internet]. 2011 Sep 23 [cited 2020 Jun 26];111(9):2069–78. https://link.springer.com/article/10.1007/s00421-010-1811-1
- CACIOPPO JT, BERNTSON GG, BINKLEY PF, QUIGLEY KS, UCHINO BN, FIELDSTONE A. Autonomic cardiac control. II. Noninvasive indices and basal response as revealed by autonomic blockades. Psychophysiology. 1994;31(6):586–98.
- Billman GE. The effect of heart rate on the heart rate variability response to autonomic interventions. Front Physiol. 2013;4 AUG.
- Park SW, Brenneman M, Cooke WH, Cordova A, Fogt D. Determination of Anaerobic Threshold by Heart Rate or Heart Rate Variability using Discontinuous Cycle Ergometry. Int J Exerc Sci [Internet]. 2014 [cited 2020 Jul 15];7(1):45–53. http://www.ncbi.nlm.nih.gov/pubmed/27182400
- Peçanha T, Silva-Júnior ND, Forjaz CL de M. Heart rate recovery: autonomic determinants, methods of assessment and association with mortality and cardiovascular diseases. Clin Physiol Funct Imaging [Internet]. 2014 Sep 1 [cited 2020 Jun 27];34(5):327–39. http://doi.wiley.com/10.1111/cpf.12102
- Pichon A, De Bisschop C, Roulaud M, Denjean A. Spectral Analysis of Heart Rate Variability during Exercise in Trained Subjects. researchgate.net [Internet]. 2004 [cited 2020 Jul 15]. https://www.researchgate.net/publication/8134523
- Nakamura FY, Fernando Aguiar A. Alteração do limiar de variabilidade da freqüência cardíaca após treinamento aeróbio de curto prazo [Internet]. periodicos.rc.biblioteca.unesp.br. [cited 2020 Jun 16]. https://www.researchgate.net/publication/228944567
- Blain G, Meste O, Blain A, Bermon S. Time-frequency analysis of heart rate variability reveals cardiolocomotor coupling during dynamic cycling exercise in humans. Am J Physiol - Hear Circ Physiol. 2009 May;296(5). DOI: 10.1152/ajpheart.00881.2008
References
Bouet M. Signification du sport. 1968 [cited 2020 Jun 24] http://archives.umc.edu.dz/handle/123456789/113451
Matveev LP. Periodización del entrenamiento deportivo [Internet]. Madrid: IN. 1975 [cited 2020 Jul 14]. https://books.google.com.co/books?id=arTbAAAACAAJ&dq=Periodización+del+entrenamiento+deportivo.&hl=es&sa=X&ved=2ahUKEwjuwcGhpM3qAhUjhOAKHfqWABoQ6AEwAHoECAAQAQ
Parlebas P. Contribution a un léxique commenté en science de laaction motrice. 198.
Mirella R. Las nuevas metodologías del entrenamiento de la fuerza, la resistencia, la velocidad y la flexibilidad [Internet]. Primera. Editorial Paidotribo; 2006 [cited 2020 Jul 14].https://www.google.com/search?biw=1366&bih=608&tbm=bks&ei=bu0NX-7SMqOIggf6rYLQAQ&q=Las+nuevas+metodologías+del+entrenamiento+de+la+fuerza%2C+la+resistencia%2C+la+velocidad+y+la+flexibilidad&oq=Las+nuevas+metodologías+del+entrenamiento+de+la+fuerza%2C+la+r
Kovacs R, medicine AB-T in cardiovascular, 2016 undefined. Cardiovascular adaptation in athletes. Elsevier [Internet]. [cited 2020 Jul 14]; https://www.sciencedirect.com/science/article/pii/S1050173815001188?casa_token=6iVaa7s-SCsAAAAA:fg_yro3j30iivEOoHG2QG9K-sc_xLZM6iLeIMXQL7vHhQBYKouobp_CbGMhM18qlJcgSv2NqBw
Borg G. Perceived exertion. Exerc Sport Sci [Internet]. 1974 [cited 2020 Jun 24]; https://journals.lww.com/acsm-essr/Citation/1974/00020/Perceived_Exertion.6.aspx
Cucullo JM, Terreros JL, Layus F, Quilez J. Prueba ergométrica indirecta. ¡Metodología para el cálculo óptimo de VO2 máx. en ciclistas RESUMEN RESUME [Internet]. apunts.org. [cited 2020 Jun 24]. https://www.apunts.org/index.php?p=revista&tipo=pdf-simple&pii=X0213371787049770
Duncan G, Howley E, in BJ-M and science, 1997 undefined. Applicability of VO2max criteria: discontinuous versus continuous protocols. europepmc.org [Internet]. [cited 2020 Jul 14] https://europepmc.org/article/med/9044234
Lucía A, Rabadán M, Hoyos J, Hernández-Capilla M, Pérez M, San Juan AF, et al. Frequency of the V̇O2max plateau phenomenon in world-class cyclists. Int J Sports Med [Internet]. 2006 Dec 30 [cited 2020 Jul 14];27(12):984–92. http://www.thieme-connect.de/DOI/DOI?10.1055/s-2006-923833
Lee J-M, Bassett DR, Thompson DL, Fitzhugh EC. Validation of the Cosmed Fitmate for Prediction of Maximal Oxygen Consumption. J Strength Cond Res [Internet]. 2011 Sep [cited 2020 Jul 14];25(9):2573–9. http://journals.lww.com/00124278-201109000-00029
Casajús JA, Piedrafita E, Aragonés M T. CRITERIOS DE MAXIMALIDAD EN PRUEBAS DE ESFUERZO CRITERIA FOR MAXIMAL EXERCISE TEST. redalyc.org [Internet]. 2009 [cited 2020 Jun 24];9(35):217–31. https://www.redalyc.org/pdf/542/54223022001.pdf
Hill A, Medicine HL-QAIJ of, 1923 undefined. Muscular exercise, lactic acid, and the supply and utilization of oxygen. academic.oup.com [Internet]. [cited 2020 Jul 14]; https://academic.oup.com/qjmed/article-abstract/os-16/62/135/1594478
Faria EW, Parker DL, Faria IE. The science of cycling: Physiology and training - Part 1. Vol. 35, Sports Medicine. 2005. p. 285–312.
Faria E, Parker D. The science of cycling: factors affecting performance--Part 2. go.gale.com [Internet]. [cited 2020 Jul 14]; https://go.gale.com/ps/i.do?id=GALE%7CA200844007&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=01121642&p=AONE&sw=w
Atkinson G, Davison R, … AJ-J of sports, 2003 undefined. Science and cycling: current knowledge and future directions for research. Taylor Fr [Internet]. [cited 2020 Jun 24] https://www.tandfonline.com/doi/abs/10.1080/0264041031000102097
Bezerra De Almeida M, Ricardo DR, Araujo CG. Variabilidade da frequência cardíaca em um teste verdadeiramente máximo [Internet]. researchgate.net. [cited 2020 Jul 14]. https://www.researchgate.net/publication/200138055
Bentley RF, Vecchiarelli E, Banks L, Gonçalves PEO, Thomas SG, Goodman JM. Heart rate variability and recovery following maximal exercise in endurance athletes and physically-active individuals. Appl Physiol Nutr Metab [Internet]. 2020 Apr 15 [cited 2020 Jul 14];apnm-2020-0154. http://www.nrcresearchpress.com/doi/10.1139/apnm-2020-0154
Cottin F, Leprêtre PM, Lopes P, Papelier Y, Médigue C, Billat V. Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling. Int J Sports Med. 2006 Dec;27(12):959–67.
Anosov O, Patzak A, Kononovich Y, Persson PB. High-frequency oscillations of the heart rate during ramp load reflect the human anaerobic threshold. Eur J Appl Physiol. 2000;83(4–5):388–94.
Lucia A, Hoyos J, science JC-M and, 2001 undefined. Preferred pedalling cadence in professional cycling. pdfs.semanticscholar.org [Internet]. [cited 2020 Jul 14]. https://pdfs.semanticscholar.org/9202/27402213d7684f1a18d47bc80d0543bacb77.pdf
Karapetian GK, Engels HJ, Gretebeck RJ. Use of heart rate variability to estimate LT and VT. Int J Sports Med [Internet]. 2008 Aug 22 [cited 2020 Jul 14];29(8):652–7. http://www.thieme-connect.de/DOI/DOI?10.1055/s-2007-989423
Cottin FO, Digue CM, Lepreˆtre P-M, Lepreˆtre L, Papelier Y, Koralsztein J-P, et al. Heart Rate Variability during Exercise Performed below and above Ventilatory Threshold. researchgate.net [Internet]. 2004 [cited 2020 Jun 24]. http://www.acsm-msse.org
Bishop D, Jenkins D. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. europepmc.org [Internet]. 1998 [cited 2020 Jun 24]; https://europepmc.org/article/med/9710868
Mcdonald KG, Grote S, Shoepe TC. Accepted for printing in. J Hum Kinet [Internet]. 2014 [cited 2020 Jul 14];41:43–9. http://www.johk.pl/
Moseley L, In AJ. The reliability of cycling efficiency. Med Sci [Internet]. 2001 [cited 2020 Jul 14]; https://pdfs.semanticscholar.org/eed4/f50eee1600210eb325bb71d0e867dd3ab504.pdf
Heil D, Wilcox A, Quinn CM. Cardiorespiratory responses to seat-tube angle variation during steady-state cycling. Exerc - Sci Sport [Internet]. 1995 [cited 2020 Jul 14]; https://europepmc.org/article/med/7674878
Bentley D, Wilson G, Davie A. Correlations between peak power output, muscular strength and cycle time trial performance in triathletes. he J Sport [Internet]. 1998 [cited 2020 Jul 14] https://europepmc.org/article/med/9830826
Fernández-García B, Pérez J. Intensity of exercise during road race pro-cycling competition. Landaluce - Sci [Internet]. 2000 [cited 2020 Jul 14]; https://europepmc.org/article/med/10795793
Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: Optimising training programmes and maximising performance in highly trained endurance athletes. Vol. 32, Sports Medicine. Adis International Ltd; 2002. p. 53–73.
MARSH A, MARTIN P. Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences. Med Sci Sport Exerc [Internet]. 1997 [cited 2020 Jul 14]. https://insights.ovid.com/mespex/199709000/00005768-199709000-00016
MacRae H, Hise K, Allen P. Effects of front and dual suspension mountain bike systems on uphill cycling performance. Med Sci Sports [Internet]. 2000 [cited 2020 Jul 14]; https://europepmc.org/article/med/10912893
Dos-Santos R da CMCCR di MFB da SAL. Effects of Pre-Exercise Activities on Progressive Cycling Test Performance and Autonomic Response. 2014 Oct [cited 2020 Jul 14];17(5):84–94. https://www.asep.org/asep/asep/JEPonlineOCTOBER2014_Silveira.pdf
Lepers R, Maffiuletti N. Evidence of neuromuscular fatigue after prolonged exercise Mode of muscle contraction and corticospinal excitability View project Blood flow stimulation and Performance recovery View project. 2000 [cited 2020 Jul 14];1880–6. https://www.researchgate.net/publication/12247282
Blain G, Meste O, Bouchard T, Blain G, De Toulon-Var U. Assessment of ventilatory thresholds during graded and maximal exercise test using time varying analysis of respiratory sinus arrhythmia. Br J Sport Med [Internet]. 2005 [cited 2020 Jul 14];39:448–52. www.bjsportmed.com
HARNISH CR, SWENSEN TC, PATE RR. Methods for estimating the maximal lactatesteady state in trained cyclists. Med Sci Sport Exerc [Internet]. 2001 Oct [cited 2020 Jul 14];1052–5. https://www.researchgate.net/profile/Chris_Harnish/publication/11934457_Methods_for_estimating_the_maximal_lactate_steady_state_in_trained_cyclists/links/5a0e070daca27244d285870e/Methods-for-estimating-the-maximal-lactate-steady-state-in-trained-cyclists.pdf
Gourine A V., Ackland GL. Cardiac vagus and exercise [Internet]. Vol. 34, Physiology. American Physiological Society; 2019 [cited 2020 Jul 15]. p. 71–80. www.physiologyonline.org
Michael S, Graham KS, Oam GMD. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals-a review [Internet]. Vol. 8, Frontiers in Physiology. Frontiers Media S.A.; 2017 [cited 2020 Jul 15]. p. 301. www.frontiersin.org
GAMELIN FX, BERTHOIN S, BOSQUET L. Validity of the Polar S810 Heart Rate Monitor to Measure R-R Intervals at Rest. Med Sci Sport Exerc [Internet]. 2006 May [cited 2020 Jun 16];38(5):887–93. http://journals.lww.com/00005768-200605000-00013
Grant CC, Mongwe L, Janse Van Rensburg DC, Fletcher L, Wood PS, Terblanche E, et al. The difference between exercise-induced autonomic and fitness changes measured after 12 and 20 weeks of medium-to-high intensity military training. J Strength Cond Res. 2016 Sep 1;30(9):2453–9.
Kaikkonen P, Hynynen E, Mann T, … HR-E journal of, 2012 undefined. Heart rate variability is related to training load variables in interval running exercises. Springer [Internet]. [cited 2020 Jun 27]. https://link.springer.com/content/pdf/10.1007/s00421-011-2031-z.pdf
Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: Intensity and duration effects. Med Sci Sports Exerc. 2007 Aug;39(8):1366–73.
Casties JF, Mottet D, Le Gallais D. Non-linear analyses of heart rate variability during heavy exercise and recovery in cyclists. Int J Sports Med [Internet]. 2006 Oct 1 [cited 2020 Jul 14];27(10):780–5. http://www.thieme-connect.de/DOI/DOI?10.1055/s-2005-872968
Sartor F, Vailati E, Valsecchi V, … FV-TJ of, 2013 undefined. Heart rate variability reflects training load and psychophysiological status in young elite gymnasts. journals.lww.com [Internet]. [cited 2020 Jun 26]; https://journals.lww.com/nsca-jscr/fulltext/2013/10000/Heart_Rate_Variability_Reflects_Training_Load_and.19.aspx
Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Vol. 43, Sports Medicine. 2013. p. 773–81.
Porras-Alvarez J, Olinda Bernal-Calderón M. Variabilidad de la frecuencia cardiaca: evaluación del entrenamiento deportivo. Revisión de tema Heart rate variability: sports training evaluation. Theme review. Duazary [Internet].
Colombia RN-R de. 8430 de 1993 del Ministerio de Salud.
Circulation TF-, 1996 undefined. of measurement, physiological interpretation and clinical use.
Gourine A V., Ackland GL. Cardiac vagus and exercise. Vol. 34, Physiology. American Physiological Society; 2019. p. 71–80.
White DW, Raven PB. Autonomic neural control of heart rate during dynamic exercise: Revisited. Vol. 592, Journal of Physiology. Blackwell Publishing Ltd; 2014. p. 2491–500.
Michael S, Graham KS, Oam GMD. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals-a review. Vol. 8, Frontiers in Physiology. Frontiers Media S.A.; 2017.
Hu S, Shi P, Yu H. The response of the autonomic nervous system to passive lower limb movement and gender differences . Springer [Internet]. 2015 Aug 1 [cited 2020 Jul 15];54(8):1159–67. https://www.researchgate.net/publication/281371940
Karapetian GK, Engels HJ, Gretebeck KA, Gretebeck RJ. Effect of caffeine on LT, VT and HRVT. Int J Sports Med. 2012;33(7):507–13.
Kaikkonen P, Rusko H, Martinmäki K. Post-exercise heart rate variability of endurance athletes after different high-intensity exercise interventions. Scand J Med Sci Sport. 2008 Aug;18(4):511–9.
Hautala AJ, Mäkikallio TH, Seppänen T, Huikuri H V., Tulppo MP. Short-term correlation properties of R-R interval dynamics at different exercise intensity levels. Clin Physiol Funct Imaging. 2003;23(4):215–23.
Teixeira L, Ritti-Dias RM, Tinucci T, Mion D, De Moraes Forjaz CL. Post-concurrent exercise hemodynamics and cardiac autonomic modulation. Eur J Appl Physiol [Internet]. 2011 Sep 23 [cited 2020 Jun 26];111(9):2069–78. https://link.springer.com/article/10.1007/s00421-010-1811-1
CACIOPPO JT, BERNTSON GG, BINKLEY PF, QUIGLEY KS, UCHINO BN, FIELDSTONE A. Autonomic cardiac control. II. Noninvasive indices and basal response as revealed by autonomic blockades. Psychophysiology. 1994;31(6):586–98.
Billman GE. The effect of heart rate on the heart rate variability response to autonomic interventions. Front Physiol. 2013;4 AUG.
Park SW, Brenneman M, Cooke WH, Cordova A, Fogt D. Determination of Anaerobic Threshold by Heart Rate or Heart Rate Variability using Discontinuous Cycle Ergometry. Int J Exerc Sci [Internet]. 2014 [cited 2020 Jul 15];7(1):45–53. http://www.ncbi.nlm.nih.gov/pubmed/27182400
Peçanha T, Silva-Júnior ND, Forjaz CL de M. Heart rate recovery: autonomic determinants, methods of assessment and association with mortality and cardiovascular diseases. Clin Physiol Funct Imaging [Internet]. 2014 Sep 1 [cited 2020 Jun 27];34(5):327–39. http://doi.wiley.com/10.1111/cpf.12102
Pichon A, De Bisschop C, Roulaud M, Denjean A. Spectral Analysis of Heart Rate Variability during Exercise in Trained Subjects. researchgate.net [Internet]. 2004 [cited 2020 Jul 15]. https://www.researchgate.net/publication/8134523
Nakamura FY, Fernando Aguiar A. Alteração do limiar de variabilidade da freqüência cardíaca após treinamento aeróbio de curto prazo [Internet]. periodicos.rc.biblioteca.unesp.br. [cited 2020 Jun 16]. https://www.researchgate.net/publication/228944567
Blain G, Meste O, Blain A, Bermon S. Time-frequency analysis of heart rate variability reveals cardiolocomotor coupling during dynamic cycling exercise in humans. Am J Physiol - Hear Circ Physiol. 2009 May;296(5). DOI: 10.1152/ajpheart.00881.2008