Issue
Copyright (c) 2020 Estevan Marin, Noraima Chirinos , Néstor Galban, Bermary Garrido, Yosselin Gómez , Aida Souki, Clímaco Cano, Juan Salazar, Carmem Prieto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Link between oxidative stress and hemolytic anemia: A molecular vision
Corresponding Author(s) : Estevan Marin
Ciencia e Innovación en Salud,
2020
Abstract
Hemolytic anemias are a group of diseases that cause reduction of hemoglobin concentration in blood as a result of the destruction of erythrocytes. According to the etiological causes, hemolytic anemias can be separated in hereditary and acquired. Over the last years, there have been an increase of evidence that points the association of oxidative stress and hemolytic anemias such as glucose-6-phosphate dehydrogenase deficiency, sickle cell disease, thalassemias, autoimmune hemolytic anemia, paroxysmal nocturnal hemoglobinuria and drug-induced hemolytic anemia. In conjunction, it has been suggested that antioxidant therapy may work as potential complementary treatment in some of these hematologic diseases. Therefore, the objective of this narrative revision in describing concisely the mechanism of how oxidative stress is produced in erythrocytes, its involvement in hemolytic anemias and lastly the outcome of antioxidant therapy in the treatment of these diseases.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Powell DJ, Achebe MO. Anemia for the Primary Care Physician. Prim Care Clin Off Pract. 2016;43(4):527–42. DOI: 10.1016/j.pop.2016.07.006
- Camaschella C. Iron-deficiency anemia. New England Journal of Medicine. 2015;372(19):1832-43 DOI: 10.1056/NEJMra1401038
- Moyano E. Factores asociados a la anemia en niños ecuatorianos de 1 a 4 años. Archivos Venezolanos de Farmacología y Terapéutica. 2019;38(6):695-99. Web: http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/17603
- Laubach J. Initial therapy in older patients with multiple myeloma. New England Journal of Medicine. 2019;380(22):2172-3. DOI: 10.1056/NEJMe1904372
- Garófalo A, Morán L, Villamarin S, Quizhpi P, Uribe V. Prevalencia de anemia moderada a severa en pacientes con enfermedad renal crónica en hemodiálisis. Revista Latinoamericana de Hipertensión. 2018;13(1):29-33. Web: http://www.revhipertension.com/rlh_1_2018/prevalencia_anemia_moderada.pdf
- WHO.Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. Geneva, World Health Organization, 2011 (WHO/NMH/NHD/MNM/11.1) Web: https://www.who.int/vmnis/indicators/haemoglobin/en/
- García Iglesias MF, Bernardino de la Serna JI, Díez Porres L, Mora Rillo M, Lavilla Uriol P, Gil Aguado A. Un paciente con anemia. MedIntegr. 2001;38(1):8-17. Web: https://www.elsevier.es/es-revista-medicina-integral-63-sumario-vol-38-num-1-X0210943301X09100
- Dhaliwal G, Cornet PA, Tierney LM. Hemolytic anemia. Am Fam Physician. 2004;69(11):2599-606 Web: https://pubmed.ncbi.nlm.nih.gov/15202694/
- Vignon G, Jeanneau R, Labrousse J, Aubrit S, Mottaz P, Carrère F, et al. How I do in front of an hemolytic anemia of unknown etiology? Ann Biol Clin (Paris). 2018;76(5):493-503. DOI: 10.1684/abc.2018.1381
- Haley K. Congenital hemolytic anemia. Medical Clinics of North America. 2017;101(2):361-74 DOI: 10.1016/j.mcna.2016.09.008
- Risinger M, Emberesh M, Kalfa TA. Rare hereditary hemolytic anemias. 2019;33(3):373-92 DOI: 10.1016/j.hoc.2019.01.002
- Berentsen S, Randen U, Tjønnfjord GE. Cold agglutinin-mediated autoimmune hemolytic anemia. Hematol Oncol Clin North Am. 2015;29(3):455-71. DOI: 10.1016/j.hoc.2015.01.002
- Kalfa TA. Warm antibody autoimmune hemolytic anemia. Hematology. 2016;(1):690-7. DOI: 10.1182/asheducation-2016.1.690
- Renard D, Rosselet A. Drug-induced hemolytic anemia: Pharmacological aspects. TransfusionClinique et Biologique. 2017;24(3):110-4. DOI: 10.1016/j.tracli.2017.05.013
- Van Zwieten R, Verhoeven AJ, Roos D. Inborn defects in the antioxidant systems of human red blood cells. Free Radical Biology and Medicine. 2014; 67:377-86. DOI: 10.1016/j.freeradbiomed.2013.11.022
- Hierso R, Waltz X, Mora P, Romana M, Lemonne N, Connes P, et al. Effects of oxidative stress on red blood cell rheology in sickle cell patients. Br J Haematol. 2014;166(4):601–6. Web: https://onlinelibrary.wiley.com/doi/pdf/10.1111/bjh.12912
- Fibach E, Dana M. Oxidative stress in paroxysmal nocturnal hemoglobinuria and other conditions of complement-mediated hemolysis. Free RadicBiolMed. 2015;88:63–9. DOI: 10.1016/j.freeradbiomed.2015.04.027
- Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Ind J Clin Biochem2015;30:11–26. DOI: 10.1007/s12291-014-0446-0
- Corrales LC, Ariza MMM. Estrés oxidativo: origen, evolución y consecuencias de la toxicidad del oxígeno. Nova. 2012;10(18). Web: http://www.scielo.org.co/scielo.php?pid=S179424702012000200009&script=sci_abstract&tlng=es
- Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;8416763. DOI: 10.1155/2017/8416763
- Burton GJ, Jauniaux E. Oxidative stress. Best Practice & Research Clinical Obstetrics &Gynaecology. 2011;25:287–99. DOI: 10.1016/j.bpobgyn.2010.10.016
- Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J. 2019;286(5):826-54. DOI: 10.1111/febs.14606
- Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5:27986–8006. Web: https://pubs.rsc.org/en/content/articlelanding/2015/ra/c4ra13315c#!divAbstract
- Younus H. Therapeutic potentials of superoxide dismutase. Int J Health Sci (Qassim). 2018;12:88–93. Web: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969776/
- Yang MS, Chan HW, Yu LC. Glutathione peroxidase and glutathione reductase activities are partially responsible for determining the susceptibility of cells to oxidative stress. Toxicology. 2006;226:126–30. DOI: 10.1016/j.tox.2006.06.008
- Scibior D, Czeczot H. Catalase: structure, properties, functions. PostepyHig Med Dosw. 2006;60:170–80. Web: https://pubmed.ncbi.nlm.nih.gov/16618987/
- Moussa Z, M.A. Judeh Z, A. Ahmed S. Nonenzymatic Exogenous and Endogenous Antioxidants. Free Radical Medicine and Biology. IntechOpen. 2019. DOI: 10.5772/intechopen.87778
- Lares M, Tafurt G, Suarez O, Alvarez C, El Khori S. Efecto del consumo de chocolate oscuro de granos cacao sin fermentar, sobre marcadores de estrés oxidativo y, disfunción endotelial en una población sana. Revista Latinoamericana de Hipertensión. 2019;14(2):163-67.Web: http://saber.ucv.ve/ojs/index.php/rev_lh/article/view/16346/144814482877
- Han, Ying-Hao, et al. Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability. 2012;426(3):427-32 DOI: 10.1016/j.bbrc.2012.08.113
- Neha, K, Haider M.R, Pathak A, Yar M.S. Medicinal prospects of antioxidants: A review. Eur. J.Med. Chem. 2019;178:687–704. DOI: 10.1016/j.ejmech.2019.06.010
- Sivilotti. Oxidant Stress and Haemolysis of the Human Erythrocyte. Toxicol Rev. 2004;23(3):169-188. DOI: 10.2165/00139709-200423030-00004
- Rochford R, Ohrt C, Baresel PC, Campo B, Sampath A, Magill AJ, et al. Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity. Proceedings of the National Academy of Sciences. 2013;110:17486–91. DOI: 10.1073/pnas.1310402110
- Iuchi Y, Okada F, Onuma K, Onoda T, Asao H, Kobayashi M, et al. Elevated oxidative stress in erythrocytes due to a SOD1 deficiency causes anaemia and triggers autoantibody production. Biochemical Journal. 2007;402:219–27. DOI: 10.1042/BJ20061386
- Charrin E, Ofori-Acquah SF, Nader E, Skinner S, Connes P, Pialoux V, et al. Inflammatory and oxidative stress phenotypes in transgenic sickle cell mice. Blood Cells, Molecules, and Diseases. 2016;62:13–21.DOI: 10.1016/j.bcmd.2016.10.020
- Konno T, Otsuki N, Kurahashi T, Kibe N, Tsunoda S, Iuchi Y, et al. Reactive oxygen species exacerbate autoimmune hemolytic anemia in New Zealand Black mice. Free Radical Biology and Medicine. 2013;65:1378–84. DOI: 10.1016/j.freeradbiomed.2013.09.021
- Iuchi Y, Kibe N, Tsunoda S, Suzuki S, Mikami T, Okada F, et al. Implication of oxidative stress as a cause of autoimmune hemolytic anemia in NZB mice. Free Radical Biology and Medicine. 2010;48(7):935–44. DOI: 10.1016/j.freeradbiomed.2010.01.012
- Tang H, Ho H, Wu P, Chen S, Kuypers FA, Cheng M, et al. Inability to Maintain GSH Pool in G6PD-Deficient Red Cells Causes Futile AMPK Activation and Irreversible Metabolic Disturbance. Antioxid Redox Signal. 2015;22(9):744–59. DOI: 10.1089/ars.2014.6142
- Cappellini MD, Tavazzi D, Duca L, Graziadei G, Mannu F, Turrini F, et al. Metabolic indicators of oxidative stress correlate with haemichrome attachment to membrane, band 3 aggregation and erythrophagocytosis in beta-thalassaemia intermedia. Br J Haematol. 1999;104:504–12. DOI: 10.1046/j.1365-2141.1999.01217.x
- Osato M, Nishimura J, Motoki Y, Hayashi S, Ueda Y, Nojima J, et al. Oxidative Stress and Intravascular Hemolysis in Paroxysmal Nocturnal Hemoglobinuria. Blood. 2014;124:4017–4017. DOI: 10.1182/blood.V124.21.4017.4017
- Rets A, Clayton AL, Christensen RD, Agarwal AM. Molecular diagnostic update in hereditary hemolytic anemia and neonatal hyperbilirubinemia. Int J Lab Hematol. 2019;41(S1):95-101. DOI: 10.1111/ijlh.13014
- Armenis I, Kalotychou V, Tzanetea R, Moyssakis I, Anastasopoulou D, Pantos C, et al. Reduced peripheral blood superoxide dismutase 2 expression in sickle cell disease. Ann Hematol. 2019;98(7):1561-72. DOI: 10.1007/s00277-019-03709-8
- Minucci A, Moradkhani K, Hwang MJ, Zuppi C, Giardina B, Capoluongo E. Glucose-6-phosphate dehydrogenase (G6pd) mutations database: Review of the “old” and update of the new mutations. Blood Cells, Molecules, and Diseases. 2012;48(3):154-65. DOI: 10.1016/j.bcmd.2012.01.001
- Domingo GJ, Advani N, Satyagraha AW, Sibley CH, Rowley E, Kalnoky M, et al. Addressing the gender-knowledge gap in glucose-6-phosphate dehydrogenase deficiency: challenges and opportunities. Int Health. 2019;11(1):7-14. Web: https://scholars.houstonmethodist.org/en/publications/addressing-the-gender-knowledge-gap-in-glucose-6-phosphate-dehydr
- Tang J, Jiang C, Xiao X, Fang Z, Li L, Han L, et al. Changes in red blood cell membrane structure in G6PD deficiency: An atomic force microscopy study. Clin Chim Acta. 2015;444:264–70. DOI: 10.1016/j.cca.2015.02.042
- Ho H-Y, Cheng M-L, Chiu DT-Y. Glucose-6-phosphate dehydrogenase – beyond the realm of red cell biology. Free Radic Res. 2014;48(9):1028–48. DOI: 10.3109/10715762.2014.913788
- Belfield KD, Tichy EM. Review and drug therapy implications of glucose-6-phosphate dehydrogenase deficiency. American Journal of Health-System Pharmacy. 2018;75(3):97-104. DOI: 10.2146/ajhp160961
- Luzzatto L, Nannelli C, Notaro R. Glucose-6-phosphate dehydrogenase deficiency. Hematology/Oncology Clinics of North America. 2016;30(2):373-93. DOI: 10.1016/j.hoc.2015.11.006
- Wu N, Zheng B, Shaywitz A, Dagon Y, Tower C, Bellinger G, et al. AMPK-Dependent Degradation of TXNIP upon Energy Stress Leads to Enhanced Glucose Uptake via GLUT1. Mol Cell. 2013;49(6):1167–75. DOI: 10.1016/j.molcel.2013.01.035
- Hancock CR, Brault JJ, Terjung RL. Protecting the cellular energy state during contractions: role of AMP deaminase. J PhysiolPharmacol Off J Pol Physiol Soc. 2006;10:17–29. Web: https://pubmed.ncbi.nlm.nih.gov/17242488/
- Alatorre M, González J, López I, Rojo W. Deficiencia de glucosa-6-fosfato-deshidrogenasa. RevSalJal. 2017;4(3).DOI: https://www.medigraphic.com/pdfs/saljalisco/sj-2017/sj173e.pdf
- Lacerda MVG, Llanos-Cuentas A, Krudsood S, Lon C, Saunders DL, Mohammed R, et al. Single-dose tafenoquine to prevent relapse of plasmodium vivax malaria. New England Journal of Medicine. 2019; 380(3):215-28. DOI: 10.1056/NEJMoa1710775
- Huo TI, Wu JC, Chiu CF, Lee SD. Severe hyperbilirubinemia due to acute hepatitis A superimposed on a chronic hepatitis B carrier with glucose-6-phosphate dehydrogenase deficiency. Am J Gastroenterol. 1996;91(1):158-9. Web: https://europepmc.org/article/med/8561121
- La Vieille S, Lefebvre DE, Khalid AF, Decan MR, Godefroy S. Dietary restrictions for people with glucose-6-phosphate dehydrogenase deficiency. Nutrition Reviews. 2019;77(2):96-106. DOI: 10.1093/nutrit/nuy053
- Bubp J, Jen M, Matuszewski K. Caring for glucose-6-phosphate dehydrogenase (G6pd)–deficient patients: implications for pharmacy. P T. 2015;40(9):572-4. Web: https://pubmed.ncbi.nlm.nih.gov/26417175/
- Sundd P, Gladwin MT, Novelli EM. Pathophysiology of sickle cell disease. Annu Rev Pathol Mech Dis. 2019;14(1):263-92. DOI: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053558/
- Heeney MM, Hoppe CC, Abbound MR, Inusa B, Kanter J, Ogutu B, et al. A Multinational Trial of Prasugrel for Sickle Cell Vas-Occlusive Events. N Engl J Med. 2016;374(7):625-35. DOI: 10.1056/NEJMoa1512021
- Fibach E, Rachmilewitz E. The role of oxidative stress in hemolytic anemia. Curr Mol Med. 2008;8(7):609–19. DOI: 10.2174/156652408786241384
- Chirico EN, Faës C, Connes P, Canet-Soulas E, Martin C, Pialoux V. Role of Exercise-Induced Oxidative Stress in Sickle Cell Trait and Disease. SportsMed. 2016;46(5):629–39. DOI: 10.1007/s40279-015-0447-z
- Conran N. Intravascular Hemolysis: A Disease Mechanism Not to Be Ignored. Acta Haematol. 2014;132(1):97–9. DOI: 10.1159/000356836
- Almeida CB, Souza LEB, Leonardo FC, Costa FTM, Werneck CC, Covas DT, et al. Acute hemolytic vascular inflammatory processes are prevented by nitric oxide replacement or a single dose of hydroxyurea. Blood. 2015;126(6):711–20. DOI: 10.1182/blood-2014-12-616250
- Kato GJ, Steinberg MH, Gladwin MT. Intravascular hemolysis and the pathophysiology of sickle cell disease. Journal of Clinical Investigation. 2017;127(3):750-60. DOI: 10.1172/JCI89741
- dos Santos TE de J, de Sousa GF, Barbosa MC, Gonçalves RP. The role of iron overload on oxidative stress in sickle cell anemia. Biomark Med. 2012;6(6):813–9. DOI: 10.2217/bmm.12.71
- Al-Naama LM, Hassan MK, Mehdi JK. Association of erythrocytes antioxidant enzymes and their cofactors with markers of oxidative stress in patients with sickle cell anemia. Qatar Medical Journal. 2015;2015(2):14. DOI: 10.5339/qmj.2015.14
- Vichinsky E. Chronic organ failure in adult sickle cell disease. Hematology. 2017(1):435-9. DOI: 10.1182/asheducation-2017.1.435
- Kato GJ, Piel FB, Reid CD, Gaston MH, Ohene-Frempong K, Krishnamurti L, et al. Sickle cell disease. Nature Reviews Disease Primers. 2018;4(1):1-22. DOI: 10.1038/nrdp.2018.10
- Hamdy MM, Mosallam DS, Jamal AM, Rabie WA. Selenium and Vitamin E as antioxidants in chronic hemolytic anemia: Are they deficient? A case-control study in a group of Egyptian children. Journal of Advanced Research. 2015;6(6):1071-7. DOI: 10.1016/j.jare.2015.01.002
- Lachant NA, Tanaka KR. Antioxidants in sickle cell disease: the in vitro effects of ascorbic acid. The American Journal of the Medical Sciences. 1986;292(1):3-10. DOI: 10.1097/00000441-198607000-00001
- Obeagu Emmanuel I, Ifeoma Stella E, Anyiam AF. Antioxidantes en el tratamiento de la anemia falciforme. Int J HematolBlo Dis. 2018;3(2): 1-2. Web: http://www.scielo.org.co/pdf/sun/v32n3/v32n3a14.pdf
- Al Balushi H, Hannemann A, Rees D, Brewin J, Gibson JS. The effect of antioxidants on the properties of red blood cells from patients with sickle cell anemia. Front Physiol. 2019; 10: 976. DOI: 10.3389/fphys.2019.00976
- Niihara, Y, et al. A Phase 3 Trial of L-Glutamine in Sickle Cell Disease. NEJM. 2018;379 (3):226-235. DOI: 10.1056/NEJMoa1715971
- Awadallah, Samir. Protein Antioxidants in Thalassemia. Advances in ClinicalChemistry. 2013;60:85-128. DOI: 10.1016/b978-0-12-407681-5.00003-9
- Taher, Weatherall, Cappellini. Thalassaemia. Lancet. 2018;391:155–67. DOI: 10.1016/S0140-6736(17)31822-6
- Voskou, et al. Oxidative Stress in β-Thalassaemia and Sickle Cell Disease. Redox Biology. 2015;6:226-39. DOI: 10.1016/j.redox.2015.07.018
- Cappellini, MariaDomenica, et al. An Overview of Current Treatment Strategies for β-Thalassemia. Expert OpiniononOrphanDrugs. 2014;2(7):665-79. Web: https://www.tandfonline.com/doi/full/10.1517/21678707.2014.918503
- Rund D, Rachmilewitz E. β-Thalassemia. N Engl J Med 2005;353(11):1135–46. DOI: 10.1056/NEJMra050436
- Fibach, Eitan, y Mutaz Dana. Oxidative Stress in β-Thalassemia. Molecular Diagnosis & Therapy. 2019;23(2):245-61. DOI: 10.1007/s40291-018-0373-5
- W. Breuer, H. Ghoti, A. Shattat, et al., Non-transferrin bound iron in Thalassemia: differential detection of redox active forms in children and older patients, Am. J. Hematol. 87 (2012) 55–61. DOI: 10.1002/ajh.22203
- Brissot P, Ropert M, Le Lan C, Loreal O. Non-transferrin bound iron: a key role in iron overload and iron toxicity. BiochimBiophys Acta. 2012;1820:403-410. DOI: 10.1016/j.bbagen.2011.07.014
- Imam, Mustapha, et al. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients 2017;9(7):671. DOI: 10.3390/nu9070671
- Sahu S, Hemlata, Verma A. Adverse events related to blood transfusion. Indian J Anaesth2014;58:543. Web: http://www.ijaweb.org/article.asp?issn=0019-5049;year=2014;volume=58;issue=5;spage=543;epage=551;aulast=Sahu
- Fibach E, Rachmilewitz E. Iron overload in hematological disorders. La Presse Medicale. 2017;46(12):e296-305. DOI: 10.1016/j.lpm.2017.10.007
- De Franceschi, et al. Oxidative Stress and ????-Thalassemic Erythroid Cells behind the Molecular Defect. Oxidative Medicine and Celullar longevity. 2013;2013:1-10. DOI: 10.1155/2013/985210
- Amer, Goldfarb, Rachmilewitz, Fibach. Fermented Papaya Preparation as Redox Regulator in Blood Cells of β-Thalassemic Mice and Patients. Phytother. Res. 2008;22:820–828. DOI: 10.1002/ptr.2379.
- Fibach, Tan, Jamuar, Ng, Amer, Rachmilewitz. Amelioration of Oxidative Stress in Red Blood Cells from Patients with β-thalassemia Major and Intermedia and E-β-thalassemia Following Administration of a Fermented Papaya Preparation. Phytother. Res. 2010;24:1334–1338. DOI: 10.1002/ptr.3116.
- Kalpravidh R, N. Siritanaratkul, P. Insain, et al. Improvement in oxidative stress and antioxidant parameters in beta-thalassemia/Hb E patients treated with curcuminoid. Clin. Biochem. 2010;43: 423–429. DOI: 10.1016/j.clinbiochem.2009.10.057
- Srichairatanakool, et al. Curcumin contributes to in vitro removal of non-transferrin bound iron by deferiprone and desferrioxamine in thalassemic plasma. Medicinal Chemistry. 2007;3(5):469–474. DOI: 10.2174/157340607781745447
- Haghpanah, Zarei, Eshghi, Zekavat, Bordbar, Hoormand, Karimi. Efficacy and safety of resveratrol, an oral hemoglobin F-augmenting agent, in patients with beta-thalassemia intermedia. DOI: 10.1007/s00277-018-3392-8
- Kelkel M, Jacob C, Dicato M, Diederich M. Potential of the dietary antioxidants resveratrol and curcumin in prevention and treatment of hematologic malignancies. Molecules. 2010;15:7035–7074. DOI: 10.3390/molecules15107035
- Noronha SA. Acquired and Congenital Hemolytic Anemia. Pediatrics in Review 2016;37:235–46. DOI: 10.1542/pir.2015-0053
- Barcellini, Wilma, et al. Autoimmune hemolytic anemia, autoimmune neutropenia and aplastic anemia in the elderly. EuropeanJournalofInternal Medicine. 2018;58:77–83. DOI: 10.1016/j.ejim.2018.05.034
- Torres Y, Bermúdez V, Garicano C, Villasmil N, Bautista J, Martínez M, et al. Desarrollo del sistema inmunológico ¿naturaleza o crianza?. Archivos Venezolanos de Farmacología y Terapéutica 2017: 36(5);184-91. Web: http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/14466
- Quist E, Koepsell S. Autoimmune hemolytic anemia and red blood cell autoantibodies. Arch Pathol Lab Med 2015;139:1455–8. DOI: 10.5858/arpa.2014-0337-RS
- Liebman, Howard, et al. Autoimmune Hemolytic Anemia. Medical Clinic of North America. 2017;101(2):351–359. DOI: 10.1016/j.mcna.2016.09.007
- Rodríguez M, Contreras I, Rojas J, Bermúdez V. Sarcoma de Kaposi diseminado asociado al uso de corticosteroides en paciente con SIDA. Archivos Venezolanos de Farmacología y Terapéutica 2014: 33(2); 69-75. Web: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-02642014000200004
- Fuji, Junichi. Oxidative stress as a potential causal factor for autoimmune hemolytic anemia and systemic lupus erythematosus. World Journal of Nephrology. 2015;4(2):213. DOI: 10.5527/wjn.v4.i2.213
- Howie, Heaher, Krysaln, Hudson. Murine models of autoimmune hemolytic anemia. Current Opinion in Hematology. 2018;25(6):473–481. DOI: 10.1097/MOH.0000000000000459
- Homma. Takujiro,et al. SOD1 deficiency decreases proteasomal function, leading to the accumulation of ubiquitinated proteins in erythrocytes. Archives of Biochemistry and Biophysics. 2015;583:65-72. DOI: 10.1016/j.abb.2015.07.023
- Papac-Milicevic N, Busch CJ-L, Binder CJ. Malondialdehyde Epitopes as Targets of Immunity and the Implications for Atherosclerosis. Elsevier Advances in Immunology. 2016;131:1–59. DOI: 10.1002/hep.28970
- Miyata T, Yamada N, Iida Y, Nishimura J, Takeda J, Kitani T, et al. Abnormalities of PIG-A Transcripts in Granulocytes from Patients with Paroxysmal Nocturnal Hemoglobinuria. N Engl J Med. 1994;330:249–55. DOI: 10.1056/NEJM199401273300404
- DeZern AE, Brodsky RA. Paroxysmal Nocturnal Hemoglobinuria. Hematology/Oncology Clinics of North America. 2015;29:479–94. DOI: 10.1016/j.hoc.2015.01.005
- Noris M, Remuzzi G. Overview of Complement Activation and Regulation. Seminars in Nephrology. 2013;33:479–92. DOI: 10.1016/j.semnephrol.2013.08.001
- Amer J, Zelig O, Fibach E. Oxidative status of red blood cells, neutrophils, and platelets in paroxysmal nocturnal hemoglobinuria. Experimental Hematology. 2008;36:369–77. DOI: 10.1016/j.exphem.2007.12.003
- De Maria GL, Sarwar R, Banning AP. Eculizumab treatment for paroxysmal nocturnal haemoglobinuria in a patient with recurrent simultaneous multivessel coronary stent thrombosis. Oxf Med Case Reports. 2015;2015:167–9.DOI: 10.1093/omcr/omu063
- Sadrzadeh SM, Graf E, Panter SS, Hallaway PE, Eaton JW. Hemoglobin. A biologic fenton reagent. J Biol Chem. 1984;259:14354–6. Web: https://pubmed.ncbi.nlm.nih.gov/6094553/
- Shingu M, Nonaka S, Nishimukai H, Nobunaga M, Kitamura H, Tomo-Oka K. Activation of complement in normal serum by hydrogen peroxide and hydrogen peroxide-related oxygen radicals produced by activated neutrophils. Clinical & Experimental Immunology. 2008;90:72–8. DOI: 10.1111/j.1365-2249.1992.tb05834.x
- Aruoma OI, Colognato R, Fontana I, Gartlon J, Migliore L, Koike K, et al. Molecular effects of fermented papaya preparation on oxidative damage, MAP Kinase activation and modulation of the benzo[a]pyrene mediated genotoxicity. BioFactors. 2006;26:147–59. DOI: 10.1002/biof.5520260205.
- Mintzer DM, Billet SN, Chmielewski L. Drug-Induced Hematologic Syndromes. Advances in Hematology. 2009;2009:1–11. DOI: 10.1155/2009/495863
- Petz LD, Garratty G, Petz LD. Immune hemolytic anemias. 2nd ed. Philadelphia, Pa: Churchill Livingstone/Elsevier Science; 2004. Web: https://www.elsevier.com/books/immune-hemolytic-anemias/petz/978-0-443-08559-8
- Garratty G. Immune hemolytic anemia caused by drugs. Expert Opinion on Drug Safety. 2012;11:635–42. DOI: 10.1517/14740338.2012.678832
- Ortiz JR, Méndez M, Garcia LP, Ramírez E, et al. Anemia hemolítica autoinmunitaria. Un reto diagnóstico y terapéutico. Hematol Mex. 2017;18(4):168-176. DOI: https://www.medigraphic.com/pdfs/hematologia/re-2017/re174d.pdf
- Fox CL, Ottenberg R. Acute Hemolytic Anemia From The Sulfonamides. J Clin Invest. 1941;20:593–602. https://doi.org/10.1172/JCI101252.
- Williams MF, Doss EP, Montgomery M. Possible Trimethoprim–Sulfamethoxazole-Induced Hemolytic Anemia: A Case Report. Journal of Pharmacy Practice. 2017;30:653–7. DOI: https://doi.org/10.1177/0897190016683303
- Adams JG. Sulfonamide-Induced Hemolytic Anemia and Hemoglobin Hasharon. Arch Intern Med 1977;137:1449. Web: https://pubmed.ncbi.nlm.nih.gov/921425/
- Beutler E. The Hemolytic Effect of Primaquine and Related Compounds: a Review. Blood. 1959;14:103–39. DOI: 10.1182/blood.V14.2.103.103
- Taylor WRJ, Thriemer K, von Seidlein L, Yuentrakul P, Assawariyathipat T, Assefa A, et al. Short-course primaquine for the radical cure of Plasmodium vivax malaria: a multicentre, randomised, placebo-controlled non-inferiority trial. The Lancet 2019;394:929–38. DOI: 10.1016/S0140-6736(19)31285-1
- Tishler M. Phenazopyridine-Induced Hemolytic Anemia in a Patient with G6PD Deficiency. Acta Haematol. 1983;70:208–9. DOI: 10.1159/000206727
- Itty R, Chopra A. Phenazopyridine: A Large Price To Pay For Pain Relief. Chest 2019;156:A1871. https://journal.chestnet.org/issues
- Rojas J, Añez R, Martínez M, Chacín M, Salazar J, Calvo M. A tale about perfect partners: New horizons in glimepiride and metformin Mechanisms of action. Archivos Venezolanos de Farmacología y Terapéutica. 2016 35(2):53-66. DOI: http://ve.scielo.org/scielo.php?pid=S079802642016000200004&script=sci_abstract&tlng=pt
- Kirkiz S, Yarali N, Arman Bilir O, Tunc B. Metformin-Induced Hemolytic Anemia. Med PrincPract. 2014;23:183–5. DOI: 10.1159/000356149
- Meir A, Kleinman Y, Rund D, Da’as N. Metformin-Induced Hemolytic Anemia in a Patient With Glucose-6- Phosphate Dehydrogenase Deficiency. Diabetes Care2003;26:956–7. DOI: 10.2337/diacare.26.3.956.
- Wu S, Wu G, Wu H. Hemolytic jaundice induced by pharmacological dose ascorbic acid in glucose-6-phosphate dehydrogenase deficiency: A case report. Medicine. 2018;97:e13588. DOI: 10.1097/MD.0000000000013588
- Rees DC, Kelsey H, Richards JD. Acute haemolysis induced by high dose ascorbic acid in glucose-6-phosphate dehydrogenase deficiency. BMJ 1993;306:841–2. DOI: 10.1136/bmj.306.6881.841
- Nguyen AP, Ness GL. Hemolytic anemia following rasburicase administration: a review of published reports. J PediatrPharmacolTher. 2014;19:310–6. DOI: 10.5863/1551-6776-19.4.310
- Bauters T, Mondelaers V, Robays H, De Wilde H, Benoit Y, De Moerloose B. Methemoglobinemia and hemolytic anemia after rasburicase administration in a child with leukemia. Int J Clin Pharm2011;33:58–60. DOI: 10.1007/s11096-011-9484-3
- Gilbertson C, Jones DR. Haemolyticanaemia with nalidixic acid. BMJ. 1972;4:493–493. DOI: 10.1136/bmj.4.5838.493-a
- Margaret Belton E, Vaughan Jones R. HÆMOLYTIC ANÆMIA DUE TO NALIDIXIC ACID. The Lancet 1965;286:691. Web: https://pubmed.ncbi.nlm.nih.gov/4158226/
- Liao Y-P, Hung D-Z, Yang D-Y. Hemolytic anemia after methylene blue therapy for aniline-induced methemoglobinemia. Vet Hum Toxicol. 2002;44:19–21. DOI: https://europepmc.org/article/med/11824767
- Goluboff N, Wheaton R. Methylene blue induced cyanosis and acutehemolytic anemia complicating the treatment of methemoglobinemia. TheJournalofPediatrics1961;58:86–9. DOI: 10.1016/s0022-3476(61)80064-4
- Lee SM, Geetha D. Dapsone induced hemolysis in a patient with ANCA associated glomerulonephritis and normal G6PD level and implications for clinical practice: case report and review of the literature. Springerplus. 2015;4:29. DOI: 10.1186/s40064-015-0816-y
- Tiono AB, Dicko A, Ndububa DA, Agbenyega T, Pitmang S, Awobusuyi J, et al. Chlorproguanil-dapsone-artesunate versus chlorproguanil-dapsone: a randomized, double-blind, phase III trial in African children, adolescents, and adults with uncomplicated Plasmodium falciparum malaria. Am J Trop Med Hyg2009;81:969–78. DOI: 10.4269/ajtmh.2009.09-0351
- Van Malderen C, Van Geertruyden J-P, Machevo S, González R, Bassat Q, Talisuna A, et al. Glucose-6-phosphate dehydrogenase deficiency, chlorproguanil-dapsone with artesunate and post-treatment haemolysis in African children treated for uncomplicated malaria. Malar J 2012;11:139. DOI: 10.1186/1475-2875-11-139
- J. Blanquicett C, Raavi T, M. Robert S. A Severe Episode of Hemolytic Anemia After Amoxicillin Exposure in A G6PD Deficient Patient. Arch Clin Med Case Rep 2019;03. DOI: 10.26502/acmcr.96550068
- Grace RF, Glader B. Red Blood Cell Enzyme Disorders. Pediatric Clinics of North America 2018;65:579–95. DOI: 10.1016/j.pcl.2018.02.005
- Joseph T. DiPiro et al. Pharmacotherapy: A Pathophysiologic Approach, 10e. McGraw-Hill Medical n.d. Web: https://accesspharmacy.mhmedical.com/book.aspx?bookID=1861
- Padayatty S, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis. 2016;22:463–93. DOI: 10.1111/odi.12446
- Montel-Hagen A, Kinet S, Manel N, Mongellaz C, Prohaska R, Battini J-L, et al. Erythrocyte Glut1 Triggers Dehydroascorbic Acid Uptake in Mammals Unable to Synthesize Vitamin C. Cell. 2008;132:1039–48. DOI: 10.1016/j.cell.2008.01.042
- Nualart FJ, Rivas CI, Montecinos VP, Godoy AS, Guaiquil VH, Golde DW, et al. Recycling of Vitamin C by a Bystander Effect. J Biol Chem. 2003;278:10128–33. DOI: 10.1074/jbc.M210686200
- May JM, Qu Z, Cobb CE. Human Erythrocyte Recycling of Ascorbic Acid: Relative Contributions From The Ascorbate Free Radical And Dehydroascorbic Acid. J Biol Chem. 2004;279:14975–82. DOI: 10.1074/jbc.M312548200
- Bowman ZS, Oatis JE, Whelan JL, Jollow DJ, McMillan DC. Primaquine-Induced Hemolytic Anemia: Susceptibility of Normal versus Glutathione-Depleted Rat Erythrocytes to 5-Hydroxyprimaquine. J Pharmacol Exp Ther. 2004;309:79–85. DOI: 10.1124/jpet.103.062984
- Jollow DJ, Bradshaw T p., Mcmillan DC. Dapsone-Induced Hemolytic Anemia. Drug Metabolism Reviews. 1995;27:107–24. DOI: 10.3109/03602539509029818
- Molinelli E, Paolinelli M, Campanati A, Brisigotti V, Offidani A. Metabolic, pharmacokinetic, and toxicological issues surrounding dapsone. Expert Opinion on Drug Metabolism & Toxicology. 2019;15:367–79. DOI: 10.1080/17425255.2019.1600670
- Sanders SW. Hemolytic Anemia Induced by Dapsone Transmitted Through Breast Milk. Ann Intern Med. 1982;96:465. DOI: 10.7326/0003-4819-96-4-465.
- Garratty G. Immune hemolytic anemia associated with drug therapy. Blood Reviews 2010;24:143–50. DOI: 10.1016/j.blre.2010.06.004
- Chahin R. Interacciones medicamentosas en pacientes hospitalizados en el Servicio de Medicina Interna del Hospital Universitario “Dr. Ángel Larralde”. Junio 2014 - Diciembre 2015. Archivos Venezolanos de Farmacología y Terapéutica. 2016:35(1);1-6. Web: http://ve.scielo.org/scielo.php?pid=S0798-02642016000100001&script=sci_abstract
References
Powell DJ, Achebe MO. Anemia for the Primary Care Physician. Prim Care Clin Off Pract. 2016;43(4):527–42. DOI: 10.1016/j.pop.2016.07.006
Camaschella C. Iron-deficiency anemia. New England Journal of Medicine. 2015;372(19):1832-43 DOI: 10.1056/NEJMra1401038
Moyano E. Factores asociados a la anemia en niños ecuatorianos de 1 a 4 años. Archivos Venezolanos de Farmacología y Terapéutica. 2019;38(6):695-99. Web: http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/17603
Laubach J. Initial therapy in older patients with multiple myeloma. New England Journal of Medicine. 2019;380(22):2172-3. DOI: 10.1056/NEJMe1904372
Garófalo A, Morán L, Villamarin S, Quizhpi P, Uribe V. Prevalencia de anemia moderada a severa en pacientes con enfermedad renal crónica en hemodiálisis. Revista Latinoamericana de Hipertensión. 2018;13(1):29-33. Web: http://www.revhipertension.com/rlh_1_2018/prevalencia_anemia_moderada.pdf
WHO.Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. Geneva, World Health Organization, 2011 (WHO/NMH/NHD/MNM/11.1) Web: https://www.who.int/vmnis/indicators/haemoglobin/en/
García Iglesias MF, Bernardino de la Serna JI, Díez Porres L, Mora Rillo M, Lavilla Uriol P, Gil Aguado A. Un paciente con anemia. MedIntegr. 2001;38(1):8-17. Web: https://www.elsevier.es/es-revista-medicina-integral-63-sumario-vol-38-num-1-X0210943301X09100
Dhaliwal G, Cornet PA, Tierney LM. Hemolytic anemia. Am Fam Physician. 2004;69(11):2599-606 Web: https://pubmed.ncbi.nlm.nih.gov/15202694/
Vignon G, Jeanneau R, Labrousse J, Aubrit S, Mottaz P, Carrère F, et al. How I do in front of an hemolytic anemia of unknown etiology? Ann Biol Clin (Paris). 2018;76(5):493-503. DOI: 10.1684/abc.2018.1381
Haley K. Congenital hemolytic anemia. Medical Clinics of North America. 2017;101(2):361-74 DOI: 10.1016/j.mcna.2016.09.008
Risinger M, Emberesh M, Kalfa TA. Rare hereditary hemolytic anemias. 2019;33(3):373-92 DOI: 10.1016/j.hoc.2019.01.002
Berentsen S, Randen U, Tjønnfjord GE. Cold agglutinin-mediated autoimmune hemolytic anemia. Hematol Oncol Clin North Am. 2015;29(3):455-71. DOI: 10.1016/j.hoc.2015.01.002
Kalfa TA. Warm antibody autoimmune hemolytic anemia. Hematology. 2016;(1):690-7. DOI: 10.1182/asheducation-2016.1.690
Renard D, Rosselet A. Drug-induced hemolytic anemia: Pharmacological aspects. TransfusionClinique et Biologique. 2017;24(3):110-4. DOI: 10.1016/j.tracli.2017.05.013
Van Zwieten R, Verhoeven AJ, Roos D. Inborn defects in the antioxidant systems of human red blood cells. Free Radical Biology and Medicine. 2014; 67:377-86. DOI: 10.1016/j.freeradbiomed.2013.11.022
Hierso R, Waltz X, Mora P, Romana M, Lemonne N, Connes P, et al. Effects of oxidative stress on red blood cell rheology in sickle cell patients. Br J Haematol. 2014;166(4):601–6. Web: https://onlinelibrary.wiley.com/doi/pdf/10.1111/bjh.12912
Fibach E, Dana M. Oxidative stress in paroxysmal nocturnal hemoglobinuria and other conditions of complement-mediated hemolysis. Free RadicBiolMed. 2015;88:63–9. DOI: 10.1016/j.freeradbiomed.2015.04.027
Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Ind J Clin Biochem2015;30:11–26. DOI: 10.1007/s12291-014-0446-0
Corrales LC, Ariza MMM. Estrés oxidativo: origen, evolución y consecuencias de la toxicidad del oxígeno. Nova. 2012;10(18). Web: http://www.scielo.org.co/scielo.php?pid=S179424702012000200009&script=sci_abstract&tlng=es
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;8416763. DOI: 10.1155/2017/8416763
Burton GJ, Jauniaux E. Oxidative stress. Best Practice & Research Clinical Obstetrics &Gynaecology. 2011;25:287–99. DOI: 10.1016/j.bpobgyn.2010.10.016
Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J. 2019;286(5):826-54. DOI: 10.1111/febs.14606
Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5:27986–8006. Web: https://pubs.rsc.org/en/content/articlelanding/2015/ra/c4ra13315c#!divAbstract
Younus H. Therapeutic potentials of superoxide dismutase. Int J Health Sci (Qassim). 2018;12:88–93. Web: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969776/
Yang MS, Chan HW, Yu LC. Glutathione peroxidase and glutathione reductase activities are partially responsible for determining the susceptibility of cells to oxidative stress. Toxicology. 2006;226:126–30. DOI: 10.1016/j.tox.2006.06.008
Scibior D, Czeczot H. Catalase: structure, properties, functions. PostepyHig Med Dosw. 2006;60:170–80. Web: https://pubmed.ncbi.nlm.nih.gov/16618987/
Moussa Z, M.A. Judeh Z, A. Ahmed S. Nonenzymatic Exogenous and Endogenous Antioxidants. Free Radical Medicine and Biology. IntechOpen. 2019. DOI: 10.5772/intechopen.87778
Lares M, Tafurt G, Suarez O, Alvarez C, El Khori S. Efecto del consumo de chocolate oscuro de granos cacao sin fermentar, sobre marcadores de estrés oxidativo y, disfunción endotelial en una población sana. Revista Latinoamericana de Hipertensión. 2019;14(2):163-67.Web: http://saber.ucv.ve/ojs/index.php/rev_lh/article/view/16346/144814482877
Han, Ying-Hao, et al. Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability. 2012;426(3):427-32 DOI: 10.1016/j.bbrc.2012.08.113
Neha, K, Haider M.R, Pathak A, Yar M.S. Medicinal prospects of antioxidants: A review. Eur. J.Med. Chem. 2019;178:687–704. DOI: 10.1016/j.ejmech.2019.06.010
Sivilotti. Oxidant Stress and Haemolysis of the Human Erythrocyte. Toxicol Rev. 2004;23(3):169-188. DOI: 10.2165/00139709-200423030-00004
Rochford R, Ohrt C, Baresel PC, Campo B, Sampath A, Magill AJ, et al. Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity. Proceedings of the National Academy of Sciences. 2013;110:17486–91. DOI: 10.1073/pnas.1310402110
Iuchi Y, Okada F, Onuma K, Onoda T, Asao H, Kobayashi M, et al. Elevated oxidative stress in erythrocytes due to a SOD1 deficiency causes anaemia and triggers autoantibody production. Biochemical Journal. 2007;402:219–27. DOI: 10.1042/BJ20061386
Charrin E, Ofori-Acquah SF, Nader E, Skinner S, Connes P, Pialoux V, et al. Inflammatory and oxidative stress phenotypes in transgenic sickle cell mice. Blood Cells, Molecules, and Diseases. 2016;62:13–21.DOI: 10.1016/j.bcmd.2016.10.020
Konno T, Otsuki N, Kurahashi T, Kibe N, Tsunoda S, Iuchi Y, et al. Reactive oxygen species exacerbate autoimmune hemolytic anemia in New Zealand Black mice. Free Radical Biology and Medicine. 2013;65:1378–84. DOI: 10.1016/j.freeradbiomed.2013.09.021
Iuchi Y, Kibe N, Tsunoda S, Suzuki S, Mikami T, Okada F, et al. Implication of oxidative stress as a cause of autoimmune hemolytic anemia in NZB mice. Free Radical Biology and Medicine. 2010;48(7):935–44. DOI: 10.1016/j.freeradbiomed.2010.01.012
Tang H, Ho H, Wu P, Chen S, Kuypers FA, Cheng M, et al. Inability to Maintain GSH Pool in G6PD-Deficient Red Cells Causes Futile AMPK Activation and Irreversible Metabolic Disturbance. Antioxid Redox Signal. 2015;22(9):744–59. DOI: 10.1089/ars.2014.6142
Cappellini MD, Tavazzi D, Duca L, Graziadei G, Mannu F, Turrini F, et al. Metabolic indicators of oxidative stress correlate with haemichrome attachment to membrane, band 3 aggregation and erythrophagocytosis in beta-thalassaemia intermedia. Br J Haematol. 1999;104:504–12. DOI: 10.1046/j.1365-2141.1999.01217.x
Osato M, Nishimura J, Motoki Y, Hayashi S, Ueda Y, Nojima J, et al. Oxidative Stress and Intravascular Hemolysis in Paroxysmal Nocturnal Hemoglobinuria. Blood. 2014;124:4017–4017. DOI: 10.1182/blood.V124.21.4017.4017
Rets A, Clayton AL, Christensen RD, Agarwal AM. Molecular diagnostic update in hereditary hemolytic anemia and neonatal hyperbilirubinemia. Int J Lab Hematol. 2019;41(S1):95-101. DOI: 10.1111/ijlh.13014
Armenis I, Kalotychou V, Tzanetea R, Moyssakis I, Anastasopoulou D, Pantos C, et al. Reduced peripheral blood superoxide dismutase 2 expression in sickle cell disease. Ann Hematol. 2019;98(7):1561-72. DOI: 10.1007/s00277-019-03709-8
Minucci A, Moradkhani K, Hwang MJ, Zuppi C, Giardina B, Capoluongo E. Glucose-6-phosphate dehydrogenase (G6pd) mutations database: Review of the “old” and update of the new mutations. Blood Cells, Molecules, and Diseases. 2012;48(3):154-65. DOI: 10.1016/j.bcmd.2012.01.001
Domingo GJ, Advani N, Satyagraha AW, Sibley CH, Rowley E, Kalnoky M, et al. Addressing the gender-knowledge gap in glucose-6-phosphate dehydrogenase deficiency: challenges and opportunities. Int Health. 2019;11(1):7-14. Web: https://scholars.houstonmethodist.org/en/publications/addressing-the-gender-knowledge-gap-in-glucose-6-phosphate-dehydr
Tang J, Jiang C, Xiao X, Fang Z, Li L, Han L, et al. Changes in red blood cell membrane structure in G6PD deficiency: An atomic force microscopy study. Clin Chim Acta. 2015;444:264–70. DOI: 10.1016/j.cca.2015.02.042
Ho H-Y, Cheng M-L, Chiu DT-Y. Glucose-6-phosphate dehydrogenase – beyond the realm of red cell biology. Free Radic Res. 2014;48(9):1028–48. DOI: 10.3109/10715762.2014.913788
Belfield KD, Tichy EM. Review and drug therapy implications of glucose-6-phosphate dehydrogenase deficiency. American Journal of Health-System Pharmacy. 2018;75(3):97-104. DOI: 10.2146/ajhp160961
Luzzatto L, Nannelli C, Notaro R. Glucose-6-phosphate dehydrogenase deficiency. Hematology/Oncology Clinics of North America. 2016;30(2):373-93. DOI: 10.1016/j.hoc.2015.11.006
Wu N, Zheng B, Shaywitz A, Dagon Y, Tower C, Bellinger G, et al. AMPK-Dependent Degradation of TXNIP upon Energy Stress Leads to Enhanced Glucose Uptake via GLUT1. Mol Cell. 2013;49(6):1167–75. DOI: 10.1016/j.molcel.2013.01.035
Hancock CR, Brault JJ, Terjung RL. Protecting the cellular energy state during contractions: role of AMP deaminase. J PhysiolPharmacol Off J Pol Physiol Soc. 2006;10:17–29. Web: https://pubmed.ncbi.nlm.nih.gov/17242488/
Alatorre M, González J, López I, Rojo W. Deficiencia de glucosa-6-fosfato-deshidrogenasa. RevSalJal. 2017;4(3).DOI: https://www.medigraphic.com/pdfs/saljalisco/sj-2017/sj173e.pdf
Lacerda MVG, Llanos-Cuentas A, Krudsood S, Lon C, Saunders DL, Mohammed R, et al. Single-dose tafenoquine to prevent relapse of plasmodium vivax malaria. New England Journal of Medicine. 2019; 380(3):215-28. DOI: 10.1056/NEJMoa1710775
Huo TI, Wu JC, Chiu CF, Lee SD. Severe hyperbilirubinemia due to acute hepatitis A superimposed on a chronic hepatitis B carrier with glucose-6-phosphate dehydrogenase deficiency. Am J Gastroenterol. 1996;91(1):158-9. Web: https://europepmc.org/article/med/8561121
La Vieille S, Lefebvre DE, Khalid AF, Decan MR, Godefroy S. Dietary restrictions for people with glucose-6-phosphate dehydrogenase deficiency. Nutrition Reviews. 2019;77(2):96-106. DOI: 10.1093/nutrit/nuy053
Bubp J, Jen M, Matuszewski K. Caring for glucose-6-phosphate dehydrogenase (G6pd)–deficient patients: implications for pharmacy. P T. 2015;40(9):572-4. Web: https://pubmed.ncbi.nlm.nih.gov/26417175/
Sundd P, Gladwin MT, Novelli EM. Pathophysiology of sickle cell disease. Annu Rev Pathol Mech Dis. 2019;14(1):263-92. DOI: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7053558/
Heeney MM, Hoppe CC, Abbound MR, Inusa B, Kanter J, Ogutu B, et al. A Multinational Trial of Prasugrel for Sickle Cell Vas-Occlusive Events. N Engl J Med. 2016;374(7):625-35. DOI: 10.1056/NEJMoa1512021
Fibach E, Rachmilewitz E. The role of oxidative stress in hemolytic anemia. Curr Mol Med. 2008;8(7):609–19. DOI: 10.2174/156652408786241384
Chirico EN, Faës C, Connes P, Canet-Soulas E, Martin C, Pialoux V. Role of Exercise-Induced Oxidative Stress in Sickle Cell Trait and Disease. SportsMed. 2016;46(5):629–39. DOI: 10.1007/s40279-015-0447-z
Conran N. Intravascular Hemolysis: A Disease Mechanism Not to Be Ignored. Acta Haematol. 2014;132(1):97–9. DOI: 10.1159/000356836
Almeida CB, Souza LEB, Leonardo FC, Costa FTM, Werneck CC, Covas DT, et al. Acute hemolytic vascular inflammatory processes are prevented by nitric oxide replacement or a single dose of hydroxyurea. Blood. 2015;126(6):711–20. DOI: 10.1182/blood-2014-12-616250
Kato GJ, Steinberg MH, Gladwin MT. Intravascular hemolysis and the pathophysiology of sickle cell disease. Journal of Clinical Investigation. 2017;127(3):750-60. DOI: 10.1172/JCI89741
dos Santos TE de J, de Sousa GF, Barbosa MC, Gonçalves RP. The role of iron overload on oxidative stress in sickle cell anemia. Biomark Med. 2012;6(6):813–9. DOI: 10.2217/bmm.12.71
Al-Naama LM, Hassan MK, Mehdi JK. Association of erythrocytes antioxidant enzymes and their cofactors with markers of oxidative stress in patients with sickle cell anemia. Qatar Medical Journal. 2015;2015(2):14. DOI: 10.5339/qmj.2015.14
Vichinsky E. Chronic organ failure in adult sickle cell disease. Hematology. 2017(1):435-9. DOI: 10.1182/asheducation-2017.1.435
Kato GJ, Piel FB, Reid CD, Gaston MH, Ohene-Frempong K, Krishnamurti L, et al. Sickle cell disease. Nature Reviews Disease Primers. 2018;4(1):1-22. DOI: 10.1038/nrdp.2018.10
Hamdy MM, Mosallam DS, Jamal AM, Rabie WA. Selenium and Vitamin E as antioxidants in chronic hemolytic anemia: Are they deficient? A case-control study in a group of Egyptian children. Journal of Advanced Research. 2015;6(6):1071-7. DOI: 10.1016/j.jare.2015.01.002
Lachant NA, Tanaka KR. Antioxidants in sickle cell disease: the in vitro effects of ascorbic acid. The American Journal of the Medical Sciences. 1986;292(1):3-10. DOI: 10.1097/00000441-198607000-00001
Obeagu Emmanuel I, Ifeoma Stella E, Anyiam AF. Antioxidantes en el tratamiento de la anemia falciforme. Int J HematolBlo Dis. 2018;3(2): 1-2. Web: http://www.scielo.org.co/pdf/sun/v32n3/v32n3a14.pdf
Al Balushi H, Hannemann A, Rees D, Brewin J, Gibson JS. The effect of antioxidants on the properties of red blood cells from patients with sickle cell anemia. Front Physiol. 2019; 10: 976. DOI: 10.3389/fphys.2019.00976
Niihara, Y, et al. A Phase 3 Trial of L-Glutamine in Sickle Cell Disease. NEJM. 2018;379 (3):226-235. DOI: 10.1056/NEJMoa1715971
Awadallah, Samir. Protein Antioxidants in Thalassemia. Advances in ClinicalChemistry. 2013;60:85-128. DOI: 10.1016/b978-0-12-407681-5.00003-9
Taher, Weatherall, Cappellini. Thalassaemia. Lancet. 2018;391:155–67. DOI: 10.1016/S0140-6736(17)31822-6
Voskou, et al. Oxidative Stress in β-Thalassaemia and Sickle Cell Disease. Redox Biology. 2015;6:226-39. DOI: 10.1016/j.redox.2015.07.018
Cappellini, MariaDomenica, et al. An Overview of Current Treatment Strategies for β-Thalassemia. Expert OpiniononOrphanDrugs. 2014;2(7):665-79. Web: https://www.tandfonline.com/doi/full/10.1517/21678707.2014.918503
Rund D, Rachmilewitz E. β-Thalassemia. N Engl J Med 2005;353(11):1135–46. DOI: 10.1056/NEJMra050436
Fibach, Eitan, y Mutaz Dana. Oxidative Stress in β-Thalassemia. Molecular Diagnosis & Therapy. 2019;23(2):245-61. DOI: 10.1007/s40291-018-0373-5
W. Breuer, H. Ghoti, A. Shattat, et al., Non-transferrin bound iron in Thalassemia: differential detection of redox active forms in children and older patients, Am. J. Hematol. 87 (2012) 55–61. DOI: 10.1002/ajh.22203
Brissot P, Ropert M, Le Lan C, Loreal O. Non-transferrin bound iron: a key role in iron overload and iron toxicity. BiochimBiophys Acta. 2012;1820:403-410. DOI: 10.1016/j.bbagen.2011.07.014
Imam, Mustapha, et al. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients 2017;9(7):671. DOI: 10.3390/nu9070671
Sahu S, Hemlata, Verma A. Adverse events related to blood transfusion. Indian J Anaesth2014;58:543. Web: http://www.ijaweb.org/article.asp?issn=0019-5049;year=2014;volume=58;issue=5;spage=543;epage=551;aulast=Sahu
Fibach E, Rachmilewitz E. Iron overload in hematological disorders. La Presse Medicale. 2017;46(12):e296-305. DOI: 10.1016/j.lpm.2017.10.007
De Franceschi, et al. Oxidative Stress and ????-Thalassemic Erythroid Cells behind the Molecular Defect. Oxidative Medicine and Celullar longevity. 2013;2013:1-10. DOI: 10.1155/2013/985210
Amer, Goldfarb, Rachmilewitz, Fibach. Fermented Papaya Preparation as Redox Regulator in Blood Cells of β-Thalassemic Mice and Patients. Phytother. Res. 2008;22:820–828. DOI: 10.1002/ptr.2379.
Fibach, Tan, Jamuar, Ng, Amer, Rachmilewitz. Amelioration of Oxidative Stress in Red Blood Cells from Patients with β-thalassemia Major and Intermedia and E-β-thalassemia Following Administration of a Fermented Papaya Preparation. Phytother. Res. 2010;24:1334–1338. DOI: 10.1002/ptr.3116.
Kalpravidh R, N. Siritanaratkul, P. Insain, et al. Improvement in oxidative stress and antioxidant parameters in beta-thalassemia/Hb E patients treated with curcuminoid. Clin. Biochem. 2010;43: 423–429. DOI: 10.1016/j.clinbiochem.2009.10.057
Srichairatanakool, et al. Curcumin contributes to in vitro removal of non-transferrin bound iron by deferiprone and desferrioxamine in thalassemic plasma. Medicinal Chemistry. 2007;3(5):469–474. DOI: 10.2174/157340607781745447
Haghpanah, Zarei, Eshghi, Zekavat, Bordbar, Hoormand, Karimi. Efficacy and safety of resveratrol, an oral hemoglobin F-augmenting agent, in patients with beta-thalassemia intermedia. DOI: 10.1007/s00277-018-3392-8
Kelkel M, Jacob C, Dicato M, Diederich M. Potential of the dietary antioxidants resveratrol and curcumin in prevention and treatment of hematologic malignancies. Molecules. 2010;15:7035–7074. DOI: 10.3390/molecules15107035
Noronha SA. Acquired and Congenital Hemolytic Anemia. Pediatrics in Review 2016;37:235–46. DOI: 10.1542/pir.2015-0053
Barcellini, Wilma, et al. Autoimmune hemolytic anemia, autoimmune neutropenia and aplastic anemia in the elderly. EuropeanJournalofInternal Medicine. 2018;58:77–83. DOI: 10.1016/j.ejim.2018.05.034
Torres Y, Bermúdez V, Garicano C, Villasmil N, Bautista J, Martínez M, et al. Desarrollo del sistema inmunológico ¿naturaleza o crianza?. Archivos Venezolanos de Farmacología y Terapéutica 2017: 36(5);184-91. Web: http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/14466
Quist E, Koepsell S. Autoimmune hemolytic anemia and red blood cell autoantibodies. Arch Pathol Lab Med 2015;139:1455–8. DOI: 10.5858/arpa.2014-0337-RS
Liebman, Howard, et al. Autoimmune Hemolytic Anemia. Medical Clinic of North America. 2017;101(2):351–359. DOI: 10.1016/j.mcna.2016.09.007
Rodríguez M, Contreras I, Rojas J, Bermúdez V. Sarcoma de Kaposi diseminado asociado al uso de corticosteroides en paciente con SIDA. Archivos Venezolanos de Farmacología y Terapéutica 2014: 33(2); 69-75. Web: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-02642014000200004
Fuji, Junichi. Oxidative stress as a potential causal factor for autoimmune hemolytic anemia and systemic lupus erythematosus. World Journal of Nephrology. 2015;4(2):213. DOI: 10.5527/wjn.v4.i2.213
Howie, Heaher, Krysaln, Hudson. Murine models of autoimmune hemolytic anemia. Current Opinion in Hematology. 2018;25(6):473–481. DOI: 10.1097/MOH.0000000000000459
Homma. Takujiro,et al. SOD1 deficiency decreases proteasomal function, leading to the accumulation of ubiquitinated proteins in erythrocytes. Archives of Biochemistry and Biophysics. 2015;583:65-72. DOI: 10.1016/j.abb.2015.07.023
Papac-Milicevic N, Busch CJ-L, Binder CJ. Malondialdehyde Epitopes as Targets of Immunity and the Implications for Atherosclerosis. Elsevier Advances in Immunology. 2016;131:1–59. DOI: 10.1002/hep.28970
Miyata T, Yamada N, Iida Y, Nishimura J, Takeda J, Kitani T, et al. Abnormalities of PIG-A Transcripts in Granulocytes from Patients with Paroxysmal Nocturnal Hemoglobinuria. N Engl J Med. 1994;330:249–55. DOI: 10.1056/NEJM199401273300404
DeZern AE, Brodsky RA. Paroxysmal Nocturnal Hemoglobinuria. Hematology/Oncology Clinics of North America. 2015;29:479–94. DOI: 10.1016/j.hoc.2015.01.005
Noris M, Remuzzi G. Overview of Complement Activation and Regulation. Seminars in Nephrology. 2013;33:479–92. DOI: 10.1016/j.semnephrol.2013.08.001
Amer J, Zelig O, Fibach E. Oxidative status of red blood cells, neutrophils, and platelets in paroxysmal nocturnal hemoglobinuria. Experimental Hematology. 2008;36:369–77. DOI: 10.1016/j.exphem.2007.12.003
De Maria GL, Sarwar R, Banning AP. Eculizumab treatment for paroxysmal nocturnal haemoglobinuria in a patient with recurrent simultaneous multivessel coronary stent thrombosis. Oxf Med Case Reports. 2015;2015:167–9.DOI: 10.1093/omcr/omu063
Sadrzadeh SM, Graf E, Panter SS, Hallaway PE, Eaton JW. Hemoglobin. A biologic fenton reagent. J Biol Chem. 1984;259:14354–6. Web: https://pubmed.ncbi.nlm.nih.gov/6094553/
Shingu M, Nonaka S, Nishimukai H, Nobunaga M, Kitamura H, Tomo-Oka K. Activation of complement in normal serum by hydrogen peroxide and hydrogen peroxide-related oxygen radicals produced by activated neutrophils. Clinical & Experimental Immunology. 2008;90:72–8. DOI: 10.1111/j.1365-2249.1992.tb05834.x
Aruoma OI, Colognato R, Fontana I, Gartlon J, Migliore L, Koike K, et al. Molecular effects of fermented papaya preparation on oxidative damage, MAP Kinase activation and modulation of the benzo[a]pyrene mediated genotoxicity. BioFactors. 2006;26:147–59. DOI: 10.1002/biof.5520260205.
Mintzer DM, Billet SN, Chmielewski L. Drug-Induced Hematologic Syndromes. Advances in Hematology. 2009;2009:1–11. DOI: 10.1155/2009/495863
Petz LD, Garratty G, Petz LD. Immune hemolytic anemias. 2nd ed. Philadelphia, Pa: Churchill Livingstone/Elsevier Science; 2004. Web: https://www.elsevier.com/books/immune-hemolytic-anemias/petz/978-0-443-08559-8
Garratty G. Immune hemolytic anemia caused by drugs. Expert Opinion on Drug Safety. 2012;11:635–42. DOI: 10.1517/14740338.2012.678832
Ortiz JR, Méndez M, Garcia LP, Ramírez E, et al. Anemia hemolítica autoinmunitaria. Un reto diagnóstico y terapéutico. Hematol Mex. 2017;18(4):168-176. DOI: https://www.medigraphic.com/pdfs/hematologia/re-2017/re174d.pdf
Fox CL, Ottenberg R. Acute Hemolytic Anemia From The Sulfonamides. J Clin Invest. 1941;20:593–602. https://doi.org/10.1172/JCI101252.
Williams MF, Doss EP, Montgomery M. Possible Trimethoprim–Sulfamethoxazole-Induced Hemolytic Anemia: A Case Report. Journal of Pharmacy Practice. 2017;30:653–7. DOI: https://doi.org/10.1177/0897190016683303
Adams JG. Sulfonamide-Induced Hemolytic Anemia and Hemoglobin Hasharon. Arch Intern Med 1977;137:1449. Web: https://pubmed.ncbi.nlm.nih.gov/921425/
Beutler E. The Hemolytic Effect of Primaquine and Related Compounds: a Review. Blood. 1959;14:103–39. DOI: 10.1182/blood.V14.2.103.103
Taylor WRJ, Thriemer K, von Seidlein L, Yuentrakul P, Assawariyathipat T, Assefa A, et al. Short-course primaquine for the radical cure of Plasmodium vivax malaria: a multicentre, randomised, placebo-controlled non-inferiority trial. The Lancet 2019;394:929–38. DOI: 10.1016/S0140-6736(19)31285-1
Tishler M. Phenazopyridine-Induced Hemolytic Anemia in a Patient with G6PD Deficiency. Acta Haematol. 1983;70:208–9. DOI: 10.1159/000206727
Itty R, Chopra A. Phenazopyridine: A Large Price To Pay For Pain Relief. Chest 2019;156:A1871. https://journal.chestnet.org/issues
Rojas J, Añez R, Martínez M, Chacín M, Salazar J, Calvo M. A tale about perfect partners: New horizons in glimepiride and metformin Mechanisms of action. Archivos Venezolanos de Farmacología y Terapéutica. 2016 35(2):53-66. DOI: http://ve.scielo.org/scielo.php?pid=S079802642016000200004&script=sci_abstract&tlng=pt
Kirkiz S, Yarali N, Arman Bilir O, Tunc B. Metformin-Induced Hemolytic Anemia. Med PrincPract. 2014;23:183–5. DOI: 10.1159/000356149
Meir A, Kleinman Y, Rund D, Da’as N. Metformin-Induced Hemolytic Anemia in a Patient With Glucose-6- Phosphate Dehydrogenase Deficiency. Diabetes Care2003;26:956–7. DOI: 10.2337/diacare.26.3.956.
Wu S, Wu G, Wu H. Hemolytic jaundice induced by pharmacological dose ascorbic acid in glucose-6-phosphate dehydrogenase deficiency: A case report. Medicine. 2018;97:e13588. DOI: 10.1097/MD.0000000000013588
Rees DC, Kelsey H, Richards JD. Acute haemolysis induced by high dose ascorbic acid in glucose-6-phosphate dehydrogenase deficiency. BMJ 1993;306:841–2. DOI: 10.1136/bmj.306.6881.841
Nguyen AP, Ness GL. Hemolytic anemia following rasburicase administration: a review of published reports. J PediatrPharmacolTher. 2014;19:310–6. DOI: 10.5863/1551-6776-19.4.310
Bauters T, Mondelaers V, Robays H, De Wilde H, Benoit Y, De Moerloose B. Methemoglobinemia and hemolytic anemia after rasburicase administration in a child with leukemia. Int J Clin Pharm2011;33:58–60. DOI: 10.1007/s11096-011-9484-3
Gilbertson C, Jones DR. Haemolyticanaemia with nalidixic acid. BMJ. 1972;4:493–493. DOI: 10.1136/bmj.4.5838.493-a
Margaret Belton E, Vaughan Jones R. HÆMOLYTIC ANÆMIA DUE TO NALIDIXIC ACID. The Lancet 1965;286:691. Web: https://pubmed.ncbi.nlm.nih.gov/4158226/
Liao Y-P, Hung D-Z, Yang D-Y. Hemolytic anemia after methylene blue therapy for aniline-induced methemoglobinemia. Vet Hum Toxicol. 2002;44:19–21. DOI: https://europepmc.org/article/med/11824767
Goluboff N, Wheaton R. Methylene blue induced cyanosis and acutehemolytic anemia complicating the treatment of methemoglobinemia. TheJournalofPediatrics1961;58:86–9. DOI: 10.1016/s0022-3476(61)80064-4
Lee SM, Geetha D. Dapsone induced hemolysis in a patient with ANCA associated glomerulonephritis and normal G6PD level and implications for clinical practice: case report and review of the literature. Springerplus. 2015;4:29. DOI: 10.1186/s40064-015-0816-y
Tiono AB, Dicko A, Ndububa DA, Agbenyega T, Pitmang S, Awobusuyi J, et al. Chlorproguanil-dapsone-artesunate versus chlorproguanil-dapsone: a randomized, double-blind, phase III trial in African children, adolescents, and adults with uncomplicated Plasmodium falciparum malaria. Am J Trop Med Hyg2009;81:969–78. DOI: 10.4269/ajtmh.2009.09-0351
Van Malderen C, Van Geertruyden J-P, Machevo S, González R, Bassat Q, Talisuna A, et al. Glucose-6-phosphate dehydrogenase deficiency, chlorproguanil-dapsone with artesunate and post-treatment haemolysis in African children treated for uncomplicated malaria. Malar J 2012;11:139. DOI: 10.1186/1475-2875-11-139
J. Blanquicett C, Raavi T, M. Robert S. A Severe Episode of Hemolytic Anemia After Amoxicillin Exposure in A G6PD Deficient Patient. Arch Clin Med Case Rep 2019;03. DOI: 10.26502/acmcr.96550068
Grace RF, Glader B. Red Blood Cell Enzyme Disorders. Pediatric Clinics of North America 2018;65:579–95. DOI: 10.1016/j.pcl.2018.02.005
Joseph T. DiPiro et al. Pharmacotherapy: A Pathophysiologic Approach, 10e. McGraw-Hill Medical n.d. Web: https://accesspharmacy.mhmedical.com/book.aspx?bookID=1861
Padayatty S, Levine M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis. 2016;22:463–93. DOI: 10.1111/odi.12446
Montel-Hagen A, Kinet S, Manel N, Mongellaz C, Prohaska R, Battini J-L, et al. Erythrocyte Glut1 Triggers Dehydroascorbic Acid Uptake in Mammals Unable to Synthesize Vitamin C. Cell. 2008;132:1039–48. DOI: 10.1016/j.cell.2008.01.042
Nualart FJ, Rivas CI, Montecinos VP, Godoy AS, Guaiquil VH, Golde DW, et al. Recycling of Vitamin C by a Bystander Effect. J Biol Chem. 2003;278:10128–33. DOI: 10.1074/jbc.M210686200
May JM, Qu Z, Cobb CE. Human Erythrocyte Recycling of Ascorbic Acid: Relative Contributions From The Ascorbate Free Radical And Dehydroascorbic Acid. J Biol Chem. 2004;279:14975–82. DOI: 10.1074/jbc.M312548200
Bowman ZS, Oatis JE, Whelan JL, Jollow DJ, McMillan DC. Primaquine-Induced Hemolytic Anemia: Susceptibility of Normal versus Glutathione-Depleted Rat Erythrocytes to 5-Hydroxyprimaquine. J Pharmacol Exp Ther. 2004;309:79–85. DOI: 10.1124/jpet.103.062984
Jollow DJ, Bradshaw T p., Mcmillan DC. Dapsone-Induced Hemolytic Anemia. Drug Metabolism Reviews. 1995;27:107–24. DOI: 10.3109/03602539509029818
Molinelli E, Paolinelli M, Campanati A, Brisigotti V, Offidani A. Metabolic, pharmacokinetic, and toxicological issues surrounding dapsone. Expert Opinion on Drug Metabolism & Toxicology. 2019;15:367–79. DOI: 10.1080/17425255.2019.1600670
Sanders SW. Hemolytic Anemia Induced by Dapsone Transmitted Through Breast Milk. Ann Intern Med. 1982;96:465. DOI: 10.7326/0003-4819-96-4-465.
Garratty G. Immune hemolytic anemia associated with drug therapy. Blood Reviews 2010;24:143–50. DOI: 10.1016/j.blre.2010.06.004
Chahin R. Interacciones medicamentosas en pacientes hospitalizados en el Servicio de Medicina Interna del Hospital Universitario “Dr. Ángel Larralde”. Junio 2014 - Diciembre 2015. Archivos Venezolanos de Farmacología y Terapéutica. 2016:35(1);1-6. Web: http://ve.scielo.org/scielo.php?pid=S0798-02642016000100001&script=sci_abstract